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A Iterated Local Search
ILS is a well-known heuristic for combinatorial optimiza-
tion problems, and has been served as a part of the stan-
dard pipeline for developing LONs from combinatorial land-
scapes. The pseudo-code describing the ILS sampling pro-
cess used in this paper is shown in Algorithm 1. Generally,
the algorithm starts by randomly initializing a n-dimensional
binary vector x as the initial solution, and then local search is
applied to x until a local optimum xℓ is found. In this paper,
a first-improvement hill climbing is used as the local search
strategy, and the neighborhood N pxq of a solution x is de-
fined over one-mutant neighbors, i.e, the set of all configura-
tions that differ from x in exactly one position. Afterwards,
a perturbation, which in our case, a two-bit-flip operation is
applied on xℓ to escape to a new solution x1, and the algo-
rithm then starts climbing from x1 until a new local optima is
reached. The perturbation process is repeated until termina-
tion condition is reached.

B Features and Metrics
In this section, we delineate the features we studied in Section
4.1 as well as correlation and performance metrics we used in
this study.

B.1 Network metrics
Density Network density (denoted as density) is a measure
of the proportion of the possible edges that actually exist in
the network. Given a network with n nodes, the maximum
number of edges is npn´ 1q{2. If the actual number of edges
is m, then the density of such a network could be calculated
as:

density “
m

npn ´ 1q{2
, (1)

Clustering coefficient It is a metric that measures the pro-
portion of paths of l “ 2 in the network that are closed. This
value could provide a sense of the extent to which pairs of
nodes with a common neighbor are also themselves neigh-
bors. At local neighborhood level, the clustering coefficient
for a single node could be defined as:

cu “
2T puq

degpuqpdegpuq ´ 1q
(2)

where T puq is the number of triangles through node u and
degpuq is the degree of u. The clustering coefficient for the

whole graph could be obtained by taking averaging through
all nodes:

C “
1

n

ÿ

vPV
cv (3)

Assortativity coefficient Given a directed graph, the assor-
tativity evaluates the Pearson correlation coefficient of degree
between pairs of linked nodes and it is calculated as:

AC “

ř

jk jkpejk ´ qinj qoutk q

σinσout
(4)

where ejk refers to the fraction of edges that connect vertices
of degree j and k and qk is the distribution of the remaining
degree and is calculated as:

qk “
pk ` 1qpk`1

ř

k kpk
(5)

where pk refers to the degree distribution, i.e., the probability
that a randomly chosen vertex will have degree k. A positive
AC value indicates a correlation between nodes of similar de-
gree, while a negative value indicates the opposite side, i.e., a
correlation between nodes of different degree.
Cumulative degree distribution (CDD) It measures the
fraction of vertices with degree smaller than k (k ě 1q and it
is calculated as:

CDD “ P pX ď kq, (6)

where P pkq “ nk{n is the degree distribution or the pro-
portion of the vertices with degree k, n denotes the total num-
ber of vertices in a graph and nk is the number of vertices with
degree k.
Rich club coefficient (RCC) RCC measures the extent to
which well-connected vertices also connect to each other.
Networks which have a relatively high RCC value are said
to demonstrate the rich-club effect and will have many con-
nections between vertices of high degree. Mathematically,
the RCC metric is calculated as:

RCC “
2Eąk

NąkpNąk ´ 1q
, (7)

where Nąk is the number of vertices with degree larger
than or equal to k, and Eąk is the number of edges among
those vertices.



Algorithm 1: ILS for sampling local optima
Input: Search space X , fitness function f
Output: V , E

1 V Ð H, E Ð H;
2 Generate an initial candidate x P X by random

sampling;
3 xℓ Ð localSearchpxq;
4 V Ð V Y txℓu;
5 i Ð 0;
6 while i ď K do
7 x1 Ð perurbationpxℓq;
8 xℓ1

Ð localSearchpx1q;
9 if fpxℓ1

q ď fpxℓq then
10 fpxℓq Ð fpxℓ1

q;
11 V Ð V Y txℓu;
12 Construct an edge between xxℓ,xℓ1

y and add it
to E ;

13 i Ð 0;
14 i Ð i ` 1;
15 return V , E

Average Degree Connectivity (ADC). ADC is the average
nearest neighbor degree of nodes with degree k, which could
be calculated by:

ADC “
1

|Npiq|

ÿ

jPNpiq

kj , (8)

where Npiq is the the neighborhood of node i, and kj is the
degree of node j

Centrality Centrality measures the importance of a node in
the network, and a lot of metrics have been proposed towards
this end.

1. Degree Centrality: Degree centrality is the simplest
method of measuring node importance, which simply
adopts node degree as importance indicators.

2. Eigenvector Centrality: As an extended version of de-
gree centrality, eigenvector centrality considers the con-
nections to more influential nodes contribute more to
the centrality score than connections to less important
nodes. Formally, eigenvector centrality of a node could
be calculated as:

xi “ λ´1
ÿ

xjPV
xj (9)

Ax “ λx (10)

where λ is a constant, A is the adjacency matrix, x is the
vector with elements equal to the centrality scores xi.

3. PageRank centrality: PageRank centrality is proposed
by Google founders Larry Page and Sergei Brin, which
is a variant of eigenvector centrality and was developed
for ranking web pages. In PageRank centrality, nodes
connected to an influential node only shares part of its

scores, and thus prevents the situation that any number
of nodes connected to an important node is also assigned
with high scores. It is defined as:

xi “ α
ÿ

j

Aij
xj

koutj

` β (11)

where α is a free parameter, and β is usually set to 1,
koutj is the out degree of node j.

4. Betweenness centrality: Betweenness centrality mea-
sures the number of shortest paths a node lies on and
hence reflect the importance of the node from a infor-
mation flow perspective. It could be expressed by:

xu “
ÿ

i,jPV
nu
ij (12)

where nu
ij “ 1 if node u lies on the shortest path from

node i to j.
5. Closeness centrality: Closeness centrality is also based

on shortest paths. Suppose dij is the shortest distance
from node i to node j, then the mean shortest distance
from i to every node in the network is:

ℓi “
1

n

ÿ

j

dij (13)

And the corresponding closeness centrality xi is defined
as the inverse of the mean shortest distance:

xi “
1

ℓi
“

n
ř

dij
(14)

B.2 Local optima features
Steps taken to reach The number of hill climb steps taken
to reach each local optimum, which is able to reflect the ef-
forts required upon reaching it. This could be recorded during
ILS search.
Perturbation taken to improve The number of perturba-
tions taken to find a superior local optimum. More specifi-
cally, for each local optima xℓ, a new solution x

1

could be
generated via a two-flip perturbation. Such a move is could
an improving move if fpLocalSearchpx

1

qq ă fpxℓq. This
could be recorded during ILS search.
Length to Global Optimum We consider both the average
and minimum length from a local optimum to the accessible
global optimum(optima). Though conventionally, this could
be defined on Hamming distance of the corresponding solu-
tions, this work, instead, determines this length using LON.
Basin size The size of the basin of attraction B of a local
optimum is defined as the cardinality of the basin set as |B|,
while B in is sampled using a specific sampling strategy. For
each local optimum x0, we conduct a random walk starting
from it, where at each step i, a one-bit-flip random mutation
is applied on previous solution xi´1 and hence results in a
new solution xi. xi is in the basin of local optimum x0 if
it could converge to x0 after a hill climbing process. The
random walk continues until a solution xj which is not in the
basin of x0 (i.e., xj converges to a local optimum different
from x0 after hill climbing) is found. This process is repeated
100 times for each local optimum and we collect all results to
constitute the basin set of each local optimum.



B.3 Correlation metrics
Pearson Correlation It is used to measure the statistical as-
sociation between two continuous variables. Its value ranges
from ´1 to 1. In particular, a larger PCC value indicates a
stronger correlation. Given two random variables x1 and x2,
their PCC is calculated as:

PCCpx1,x2q “
covpx1,x2q

σpx1qσpx2q
(15)

where covp¨, ¨q evaluates the covariance and σp¨q repre-
sents the standard deviation.
Spearman Correlation It is a non-parametric measure of
rank correlation which assesses how well the relationship be-
tween two variables can be described using a monotonic func-
tion. The Spearman correlation coefficient is defined as the
Pearson correlation coefficient between the rank variables.

rs “ PCCpRpx1q,Rpx1qq “
covpRpx1q,Rpx2qq

σrRpx1qsσrRpx2qs
(16)

where Rpx1q and Rpx2q are rank of x1 and x2 respectively.
Kendall Correlation This is a measure of rank correlation,
i.e., the similarity of the orderings of the data when ranked by
each of the quantities. A pair of observations pxi, yiq and
pxj , yjq (where i ă j) are said to be concordant if both
xi ą xj and yi ą yj are satisfied, or, if both xi ă xj

and yi ă yj are satisfied. In other cases, these two obser-
vations are said to be discordant. The Kendall τ correlation
between random variables X and Y , where values xi,yi in the
set px1, y1q, px2, y2q...pxn, ynq are unique, is defined as:

τ “
Nconcor ´ Ndiscor

npn´1q

2

(17)

where Nconcor is the number of concordant pairs, and Ndiscor

is the number of discordant ones.

B.4 Performance metrics
R2 score It measures the proportion of the variance in the
dependent variable that is predictable from the independent
variable.

R2 “ 1 ´

řm
i“1pŶi ´ Yiq

2

řm
i“1pȲi ´ Yiq

2
(18)

C Graph Representation Learning
Techniques

C.1 Hope node embedding
HOPE could generate node features that is able to capture
asymmetric high-order proximity in directed networks. For
undirected networks, the transitivity is symmetric, but it is
asymmetric in directed networks. In order to preserve the
asymmetric transitivity, HOPE learns two vertex embedding
vectors Us, U t P R|V |ˆd, which is called source and tar-
get embedding vectors, respectively. After constructing the
high-order proximity matrix S from four proximity measures,
i.e., Katz Index, Rooted PageRank, Common Neighbors and
AdamicAdar. HOPE learns vertex embeddings by solving the
following matrix factorization problem:

min
Us,Ut

}S ´ UsU tT }2F (19)

C.2 Feather graph embedding
Feather graph embedding adopts characteristic functions of
node features with random walk weights to generate features
for each node neighborhood. Assume an unweighted and
undirected graph G “ pV, Eq, for each node v P V , we de-
scribe a node feature as a random variable X and specify fea-
ture vector xv , where xv P R|V|. Given the source node u
and target node w, where u,w P V and

ř

wPV P pw|uq “ 1
and evaluation point θ P R we define real and imaginary part
of the r´scale random walk weighted characteristic function
for node u as:

RepEpeiθX |G, u, rqq “
ÿ

wPV

Âr
u,wcospθxwq (20)

ImpEpeiθX |G, u, rqq “
ÿ

wPV

Âr
u,wsinpθxwq (21)

where Âr
u,w “ pD´1Aqr. Then, the combination of

Rep‚q and Imp‚q could serve as a feature representation for
node u. Thereafter, mean pooling is used to develop graph-
level features based on node-level features.

D UMAP Dimensionality Reduction
The UMAP is a dimensionality reduction technique that is
based on three assumptions:

• Data are uniformly distributed on an existing manifold.
• Topological structure of the manifold should be pre-

served.
• Manifold is locally connected.

Generally, UMAP comprises two stages, including learn-
ing a manifold structure in a high-dimensional space and find-
ing the relative representation in the low-dimensional space.
In the first phase, the initial step is to find the nearest neigh-
bors for all datapoints, using the nearest-neighbor-descent
algorithm. Then, UMAP constructs a graph by connecting
the neighbors identified previously; it should be noticed that
the data are uniformly distributed across the manifold, so the
space between datapoints varies according to regions where
data are denser or sparse. According to this assumption, it
is possible to introduce the concept of ‘edge weights’: from
each point, the distance with respect to the nearest neigh-
bors is computed, so the edge weights between datapoints are
computed, but there exists a problem of disagreeing edges.

E Simulated Annealing
Simulated annealing (SA), analogical to the cooling process
of metals and glass, is one of the earliest heuristics that has
the capability to overcome local optima. This is achieved by
allowing moves that lead to probably less fit solutions com-
pared to current ones and thus increase the diversity of the
exploration and enabling the algorithm to escape from local
optima. The probability of performing such a move will be
reduced as the search process precedes. The pseudo-code de-
scribing the SA process is shown in Algorithm 2.



Algorithm 2: Simulated Annealing
Input: Maximum Number of Iterations K; Initial

Temperature T0;
1 Initialize x P X ;
2 i Ð 0;
3 while i ď K do
4 choose xi`1 P N pxiq;
5 if fpxiq ď fpxi`1q then
6 xi Ð xi`1;

7 else if expp
fpxi`1q´fpxiq

Ti
q ě randp0, 1q then

8 xi Ð xi`1;
9 i Ð i ` 1;

10 Ti`1 Ð T0 ˆ 0.8i{300;
11 return xi`1

The algorithm starts by randomly initializing a solution x
from the search space X . An initial temperature T0 is also
specified and will be reduced during the simulation accord-
ing to a certain strategy, which in this case, the temperature
Ti at i-th iteration is given by T0 ˆ 0.8i{300. Then, for each
iteration, a new solution x1 will be drawn from the neighbor-
hood N pxq. x1 will be directly accepted if fps1q ă fpsq.
Otherwise, if fps1q ě fpsq, x1 will replace x with a probabil-
ity:

exp p´
fpx1q ´ fpxq

T
q (22)

Since the temperature T will be reduced as the process goes
on, this probability will becomes smaller accordingly. This
would allow the algorithm to converge to a high-quality solu-
tion at the end. In addition, such probability is also dependent
on the difference fpx1q ´ fpxq. The higher this difference,
the lower will be the probability to accept a move between
the two solutions.

F Supplementary Experiments
In this section, we present the analytical results using alter-
native metrics/methods. Specifically, in Figure 1-4, we pre-
sented the results based on three different correlation met-
rics, namely Pearson, Spearman and Kendall. Thereafter, in
Figure 5, we repeated the final regression experiment using
linear regression. Most of the results are consistent with the
ones we reported in the main text and could lead to similar
conclusions.
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Figure 1: Comparisons of heatmaps of correlations between fitness values and selected features using different correlation measures.
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Figure 2: Comparisons of heatmaps of Sim metrics obtained for NPP instances across all studied dimensions using different correlation
measures..
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Figure 3: 3D bar charts of the Sim calculated using different correlation measures versus ∆SR and ρSR across different dimensions.
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Figure 4: Quadratic regression analysis of ∆SR and ρSR versus Sim calculated using different correlation measures.
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Figure 5: Linear regression analysis of ∆SR and ρSR versus Sim calculated using different correlation measures.
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