
Proceedings of the 2014 International Conference on Machine Learning and Cybernetics, Lanzhou, 13-16 July, 2014 

AN INDICATOR-BASED SELECTION MULTI-OBJECTIVE EVOLUTIONARY 

ALGORITHM WITH PREFERENCE F OR MULTI-CL ASS ENSEMBLE 

JING-JING CAOl, SAM KWONG2, RAN WANG2,3, KE LI2 

1 School of Logistics Engineering, Wuhan University of Technology, Wuhan 430070, China 
2 Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 

3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518067, China 
E-MAIL: bettymore0501@gmail.com.cssamk@cityu.edu.hk 

Abstract: 

One of the most difficult components for multi-class classifica

tion system is to find an appropriate error-correcting output codes 

(ECOC) matrix, which is used to decompose the multi-class prob

lem into several binary class problems. In this paper, an indi

cator based multi-objective evolutionary algorithm with prefer

ence involved is designed to search the high-quality ECOC matrix. 

Specifically, the Harrington's one-sided desirability function is in

tegrated into an indicator-based evolutionary algorithm (IBEA), 

which aims to approximate the relevant regions of pareto front 

(PF) according to the preference of the decision maker. Simula

tion results show that the proposed approach has better classifica

tion performance than compared multi-class based algorithms 
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1. Introduction 

Ensemble methods have been proven to be powerful to en
hance performance of a single classifier by means of combing 

weak learners. Common techniques of base classifier for en
semble are originally designed for two-class problems since the 
decision boundary of binary classifier is simple and easy to be 

distinguished. Such kinds of algorithms include support vector 
machine (SV M) [1], Decision stump [2] and so on. However, 
many real-world applications have more than two classes and 
they are considered as multi-class problems. The multi-class 
problem is more complex than a binary class problem since 
the instance with multi-class has much higher probability to be 
misclassified than the instance with two-class. Thus, investi-
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gating multi-class problem becomes an active research area. 

Most of the researchers decompose a multi-class problem in
to many two-class problems. There are three types of popular 
techniques: one-vs-one (OVO) [3], one-vs-all (OVA) [4] and 
error-correcting output codes (ECOC) [5]. One-vs-one (OVO) 
method selects a pair of classes for constructing each base clas

sifier, by which it splits the c class problem into c( c - 1) /2 

binary problems. One-vs-all (OVA) method is considered as 
an efficient approach by learning a classifier between one class 
and the remaining classes. ECOC [5] is developed under the 
framework of code matrix M E {-I, I}, where 1 indicates 
the positive instance label and -1 corresponds to the negative 
instance label of a binary classifier. The matrix has a size of 
k x l with each column represents the output label of binary 
classifier and each row is designated as the codeword of each 
class. In fact, it can be induced that OVO and OVA as a spe
cial case of ECOC system. Further, searching for an optimal 
ECOC matrix is proven to be an NP hard problem [6, 7]. One 
effective way to find the best ECOC is to employ evolutionary 
algorithms (EAs), such as genetic algorithms (GAs). However, 
the existing problems for applying GAs into supervise learning 
problem rely on two folds: 1) Though the task for classification 
is to get the best classification accuracy, other qualities also 

should be considered for the goodness of ECOC matrix, such 
as row separation and column diversity of matrix. Applying 
single objective GAs (SOGAs) may not be good enough to bal
ance the relationship among these criteria. 2) Multi-objective 
EAs (MOGAs) has obtained popularity since it aims at finding 
a trade-off among the objectives. In ECOC scenario, SPEA2 
has been utilized to search the best matrix but the experimen
tal results are not satisfactory[8]. Thus, how to devise a good 

multi-objective genetic algorithm becomes a challenge for E
COC problem. 
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The main contribution of this paper is to include the Harring
ton's one-sided desirability function into the indicator-based s
election evolutionary algorithm (IBEA), which aims to approx
imate the relevant regions of pareto front (PF) according to the 
preference of the decision maker. By doing so, all the objec

tives are mapped to the interval between 0 and 1. Three ob
jectives are considered in this work: (1) training accuracy, (2) 
average training accuracy of the binary classifiers and (3) min

imum relative hamming distances among codewords. Among 
these three objectives, the accuracy has been given a higher 
preference to guide the search along the region with higher ac
curacy rate. 

2. Related Work 

In recent years, many researchers have done several works 
to find the best ECOC, and GAs are regarded as efficient ap
proaches among these methods. Alba et al. [7] design a local 
hybrid search approach named genetic algorithm with repul
sion algorithm (GARA) for telecommunications systems, then 
this algorithm is adopted by Pimenta et al. [9] to generate the 
ECOC matrices. Garcia et al. [10] design an evolutionary al
gorithm to search the "best code matrix" with each chromo
some denotes a complete classifier. Lorena et al.[8] summarize 
several technologies on designing code-matrix for multi-class 
problems. They applied a multi-objective genetic algorithm: 
SPEA2 (Strength Pareto Evolutionary Algorithm 2) algorithm 
[11] to search the best code-matrix. However, the experimen
tal results show that SPEA2 fails to find a better solution by 
compared with OVA with the same columns. 

The concept of the hypervolume measure (S-metric) is first
ly proposed by Zitzler and Thiele [12]. Beume et al. [13] ap
plies the S-metric in an evolutionary multi-objective optimiza
tion algorithm (EMOA) as selection procedure. The S-metric 
is considered as one of the most successful criteria for deriving 
a well-distributed set of approximation PF. Further, to evalu
ate the quality of the obtained approximation PF, the S-metric 
is also regarded as an important quality indicator. As a matter 
of fact, the S-metric is often designed for solving MOO prob
lem and rarely employed in pattern recognition field since it 
focuses on finding the trade-off between convergence and di
versity of Pareto-optimal set. However, for supervised learning 
problem, the desired classifier tends to predict the label of in
stances as accurate as possible. Thus, utilizing the preference 
based multi-objective GAs can give a compromise scheme to 
investigate the interest regions for supervised learning task. In 
addition, the IBEA used in this paper mainly employs a binary 
performance measure (indicator) in the environmental selection 

process and uses it as the optimization goal. 

3. Preliminary Knowledge 

3.1. Dense Decoding Methods 

There are two steps can be implemented in ECOC system: 
the coding step and the decoding step. As mentioned in the in
troduction of this paper, the coding step applies the decomposi
tion strategies to partitioning the multi-class labels into several 
bipartitions. Whereas the decoding phase consist of selecting 
the class (row of ECOC matrix) with the least distance between 
testing codeword and base codeword of each class. The code
word for a testing instance is generated by the output of each 
binary classifier. 

Suppose we have a ECOC matrix MkxT with values of 
{ - 1 , + I}, the decision vector f (x) of instance x is given as 
follows: 

f(x) = arg min DM(x, M(c,)) (1) c=l, .. . ,k 
Typically, the decoding methods for dense code is mainly 

given as follows [14]: 
• Hamming decoding This technique is the most frequently 

used method for ECOC decoding, which is under the assump
tion that the learning task is regarded as an error-correcting 
communication. The hamming distance between the output of 
the Lth binary classifier and each row of M is given as follows: 

( ) � 1 - sign(ft(x) . M(c,t)) 
DMHD x, M(c,.) = � 

2 t=l 
(2) 

• Euclidean decoding[15] This technique is also a common 
method by directly employ the Euclidean distance. 

T 
DMED(X, M(c,.)) = L(ft(x) - M(c,t))2 (3) 

t=l 
In the framework of decoding strategies, it has been shown 

that the Euclidean decoding is in proportion to the hamming 
decoding in dense coding case [14]. This case is only related to 
the number of failures between two codewords. 

3.2. Design Principle of Multi-Class ECOC Method 

In general, evaluation of the goodness of ECOC matrix de
pends on many folds. In GA learning, these criteria can be used 
as objectives to guide selection procedure. 
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• Lacc: Training accuracy of the individual k in the popula
tion: 

1 
N 

Lac4 = 
N 

L I(f(xn) = Yn), 

[0.8497,0.8874] and [0.0244,0.0412]. From these ranges, it 
can be seen that M H D has a different range of Lace and 
BCacc. Though the range of each objective value does not 
affect the I(fi(Xl), li(X2 )), i = 1,2,3, we want to limit al

(4) 1 the value in a similar range for illustrating the experimental 
n=l 

where t denotes the current iteration, f(xn) is defined in Eq. 
(1) and 1(·) equals to 1 if f(xn) = Yn, otherwise, 0. 

• BCacc: Average training accuracy of the binary classifiers 
for individual k: 

1 
N I 

BCacc% = 
Nl 

L L I(f(xn' Mp) = Yn), 
n=lp=l 

(5) 

where f(xn, Mp) represents the output class label of pattern 

Xn, which is obtained by the p_th binary classifier and l is the 
length of the code. 

• MHD: Minimum relative hamming distances among code
words. It is related to the "row separation " of the ECOC ma
trix; that is, codewords should be well-separated in hamming 
distance. 

analysis more clearly. Hence, we add a term ct in the form 
of evaluating the value of M H D in each iteration. Further, it 
should be noted that the criteria Lace, BCacc and M H D are 
the objectives that needed to be maximized, then the following 
objectives are employed to be minimized in this work: 

f(Xk) = [h(Xk), !2(Xk), h(Xk)]' 

= [1 - Lace%, 1 - BCacc%, 1 - M H D% - Ct]', (7) 

where Ct = min( 
J Lacc,2 +BCacc,2 

1 - max M H Dt ) and 2 ' k k ' 
Lacct and BCacct denote the average Lace and BCacc val
ues among all the individuals in the current population, re
spectively. (1 - max M H D% ) is used to make sure that 

k 
1 - MHD% - ct 2': O. 

MHD% = . min 
't,]=l, . . .  ,k, 

DM (M(Ci,')' M(cj,.)) 
l 

(6) 3.3. Desirability Function 
i#-j 

• CL: The length of codewords. This value should be min
imized in order to decrease the redundancy of the codewords. 
Since each column of the matrix represents a binary classifier, 
the minimization of CL is equivalence of pruning the number 
of base binary learners. 

From the perspective of communication techniques, M H D 
and CLare two criteria that conflicted with each other. Con
cretely, the larger value of M H D implies the higher error
correcting capacity, while the smaller value of C L indicates 
the faster transmission of error-correcting communication. 

In general, the margin of the classification and the binary 
classifier's diversity measure can be considered as objectives 
as well. However, the practical behaviors of these two criteria 
are shown less attractive than Lace, BCacc and MHD crite

ria [10]. Thus in this work, we only apply Lace, BCacc and 
M H D as the objectives. Among these three objectives, the 
values of Lace and BC ace are distributed in similar range, typ
ically the BCacc is a bit higher than Lace, while for M H D, 
the value of individual is usually very small. Take the UCI data 
set "mfeaLmor " as an example, we randomly generate 1 00 E
COC matrices and evaluate their corresponding three objective 
values and ranges. This procedure is repeated ten times and the 
average range of each objective is obtained. For this dataset, 
the ranges of Lace, BCacc and MHD are [0.7056,0.7469], 

The hypervolume based MOEA mainly focus on generat
ing the solution with regards to two factors: one is the con
vergence of the non-dominated solutions, while the other is a 
well-distribution of those solutions. However, in some applica
tions, the decision maker only pursues to the relevant regions 
of the pareto front (PF). The desirability functions (DFs) are 
proposed to map each objective to the interval [0, 1] and differ
ent parameter settings of DFs show the preference of different 
objectives. Usually, the DFs can transform each objective into 
a nonlinear shaped curve. In the framework of multiobjective 
industrial quality control, Harrington [16] introduces the def
inition of desirability. In fact, any function that can map the 
objective space to domain [0, 1] can be considered as a de
sirability. The following equation is a well-known one-sided 
Harrionton DF with the form of the Gompertz-curve [17]: 

d(Y) = exp( -exp( -bo + b1 Y)), (8) 

where bo and b1 are the parameters that determined by the fol
lowing formula: 

bo = -log( -log(d(l)) - b1y(1)), 

b
1 

= (-log( -log(d(2))) + log( -log(d(1))))/(y(2) _ y(l)) 
(9) 
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In the above equations, (y(1), d(1)) and (y(2), d(2)) repre
sent two objective values and the corresponding desirability. In 
Tobias and Heike's work [18], they point out that the setting 
values of d(l) and d(2) in industrial application is approximate
ly 0.99 and 0.01 respectively. One of the advantages of this DF 

is that it maintains the dominance relations of individuals in 
each objective dimension due to its monotonicity property. An
other merit is that the generated desirability is on the same scale 
after DF mapping, which avoids the bias range of the solution 
in approximated PF. 
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Figure 1. Shape of the Gompertz-curve with objective values of 
(y(l), del)) = (0.5,0.6) and (y(2), d(2)) = (0.7,0.2). 
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Figure 2. Shape of the Gompertz-curve with objective values of 
(y(l), del)) and (y(2), d(2)). 

An example of the Gompertz-curve shape is shown in 

Fig.8(a). It transforms the shape of PF (12 = 1 - 11) by se
lecting parameter values as (Y(l), d(l)) = (0.5,0.6) and (y(2), 

d(2)) = (0.7,0.2) . This type of DF is a one-sided specification 
curve, which is designed for maximizing or minimizing the ob
jectives. Fig. 1 shows three different transformation shapes of 

the PF in desirability space. The main goal for classification is 
to improve the learning accuracy in prediction phase. Regard
less of the overfitting factor, we assume that the higher training 
accuracy probably implies the higher testing accuracy. Further, 
it is obvious that in ensemble theory, the classifier with high 
or average performance is much preferred. Based on the above 
discussions, the objective Lace is selected to be transformed 
by one-sided Harrionton DF with parameter setting as (y(1), 

d(l)) = (0.01,0.99) and (y(2), d(2)) = (1,0.01), i.e., curve 

3. Through this transformation, it can be seen from Fig. 8.(b) 
that the individual with small value in term of training accuracy 
would probably be assigned less value. For the individuals with 
high or medium value of training accuracy, they would be given 
larger values. It implies that the classifier with a higher capa
bility to classify the training data is probably preferred during 
iterations. Compared with curve 3, curve 1 focuses on trans
forming medium values to small values, and curve 2 controls 

the medium values in a large range of change. 

3.4. IBEA-DF Algorithm 

According to the above analysis, we propose an indicator 
based multi-objective evolutionary algorithm with preference 
information included (IBEA-DF). The algorithm is designed 
base on the framework of IBEA [19] and step 2 and step 3 
are added in IBEA-DF algorithm. The detailed algorithm is 
described in algorithm 1. 

4. Experiments 

In this section, we conduct the experiment on 10 multi-class 
data sets from the VCI Machine Learning Repository [20]. Ta
ble 1 represents a summary of these datasets, which are the 

benchmark problems consist at least six classes. LibSVM [21] 
is also used in both experiments, and SV M with gaussian RBF 

kernel (eillu-vI12 ) is adopted for all the methods. Specifically, 
the parameter 'Y is set as: 'Y = 2-13. Regarding the evolutionary 
algorithm, the population size f3 and the maximum number of 
generations T are both set as 100. The crossover and mutation 
rate equal to 0.9 and 0.1. f£ = 0.5 is used in fitness evaluation 
and the code length of each ECOC matrix is fixed as 50. 

The experiment is designed by comparing the convention
al one-vs-all, CHC [10], IBEA [19] and IBEA-DF algorithms. 
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Algorithm 1: IBEkDF 

Input: Population size (3, maximum number of 

generations T,jitness scaling factor /'i, 

Output: Pareto set approximation A 
Step 1: Initialization[19]: Generate an initial population P 
of size (3; set t = 1 . 
Step 2: Multi-objective values evaluation Calculate 
multi-objective values of individuals in P, i.e., Lac4, 
BGac4 and MHD�. Then obtain 

!(Xk) 
= [1 - Lace%, 1 - BGacc%, 1- MHD� - GtlT 

Step 3: DF based preference transformation Define 

Y = 1 - Lac4, and transform Y by one-sided Harrionton 

DF as follows: d(Y) = exp( - exp( -bo + b
1 

x Y)), 

Step 4: Fitness assignment[19]: Calculate fitness values of 
individuals in P, i.e., for all Xk E P set 

F(f(Xk)) = L!(Xt)EP\
{f(Xk)} 

_e-I({f(XI)},{f(Xk)})/"'
, 

Step 5: Environmental selection: Repeat the steps 6-8 until 
the size of popUlation P does not exceed (3 as original 
IBEA Algorithm [19] describes, 
Step 6: Termination: If t 2': T is satisfied then set A to the 
set of decision vectors represented by the non-dominated 
individuals in P. Stop. 
Step 7: Mating selection: To fill the temporary mating pool 
pi, binary tournament selection with replacement is 
applied on population P . 
Step 8: Variation: Utilize recombination and mutation 
operators of CHC algorithm [10] to the mating pool pi and 
put the offspring into P. Let t = t + 1 and go to Step 2. 

Table 1. DATASE T INFORMAT ION 

Data Pattern # Feature # Class # 
Chart 600 60 6 
Dermatology 366 34 6 
Ecoli 336 7 8 
Libras 360 90 15 
MfeaLfac 2000 216 10 
MfeatJ'ou 2000 76 10 
MfeaLkar 2000 64 10 
MfeaLmor 2000 6 10 
MfeaLzer 2000 47 10 
Yeast 1484 8 10 

Table 2. AV ERAGE OF T ES TING ERROR BY COMPAR-

ING OVA, CHC, mEA AND mEA�F ALGORI THMS WI T H  

GAUSSIAN RBF KERNEL 

Data OVA CRC IBEA IBEA-DF 

Chart .1037 ± .0093 .0233 ± .0059 .0200 ± .0058 .0190 ± .0037 
Dermatology .2967 ± .0133 .1399 ± .0089 .1388 ± .0108 .1235 ± .0105 

Ecoli .1786 ± .0111 .1482 ± .0110 .1482 ± .0152 .1429 ± .0060 
Libras .5406 ± .0325 .3056 ± .0276 .2922 ± .0242 .3017 ± .0275 

MfeaLfac .8416 ± .0019 .3631 ± .0461 .3533 ± .0576 .3730 ± .0355 
MfeaLfou .6472 ± .0034 .2737 ± .0198 .2530 ± .0194 .2371 ± .0201 
MfeaLkar .2698 ± .0040 .0415 ± .0039 .0371 ± .0032 .0401 ± .0035 
MfeaLmor .4084 ± .0398 .2877 ± .0043 .2827 ± .0082 .2873 ± .0032 
MfeaLzer .2610 ± .0054 .1800 ± .0080 .1792 ± .0082 .1807 ± .0068 

Yeast .6340 ± .0116 .4236 ± .0074 .4340 ± .013 .4278 ± .0077 
Average .5151 ± .0110 .3489 ± .0119 .3449 ± .0138 .3444 ± .0104 

IBEA algorithm remove the step 3 from IBEA-DF to show the 
performance of indicator based evolutionary algorithm. From 
Table 2, IBEA and IBEA-DF represent similar behavior, while 
on the average term, the performance of IBEA-DF is slightly 

better than IBEA algorithm. As for OVA and CHC methods, 
they only achieve the best performance on MfeaLkar and Yeast 
data set, respectively. The results for CHC algorithm are worst 
but it cost the least computational time. Overall, the proposed 
indicator based algorithms IBEA and IBEA-DF perform better 
then traditional CHC and OVA algorithms. 

5. Conclusions 

In this paper, we have studied different ways to integrate 
multi-objective evolutionary algorithm into searching best E
COC matrix for multi-class recognition problem. We firstly 
apply indicator-based selection multi-objective evolutionary al
gorithm (IBEA) to replace single-objective based genetic algo
rithm since ECOC based multi-class problem need to be solved 
by considering more than one criterion. Further, a one-sided 

desirability function is utilized to assign preference to the train
ing accuracy, which is considered as an important objective in 
genetic learning process. Accordingly, we have conduct ex
periment to analyze and show the performance of the proposed 
algorithms. There are still some more work could be done in 
the future. The first is to compare the differences among oth
er multi-objective based genetic algorithms, such as NSGA-II. 
Another is to utilize different desirability functions or param
eters to find the most appropriate algorithm for solving multi
class problem. 
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