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Abstract. Most existing studies on evolutionary multi-objective opti-
misation (EMO) focus on approximating the whole Pareto-optimal front.
Nevertheless, rather than the whole front, which demands for too many
points (especially when having many objectives), a decision maker (DM)
might only be interested in a partial region, called the region of interest
(ROI). Solutions outside this ROI can be noisy to the decision mak-
ing procedure. Even worse, there is no guarantee that we can find DM
preferred solutions when tackling problems with complicated properties
or a large number of objectives. In this paper, we use the state-of-the-
art MOEA/D as the baseline and develop its interactive version that
is able to find solutions preferred by the DM in a progressive manner.
Specifically, after every several generations, the DM is asked to score a
limited number of candidates. Then, an approximated value function,
which models the DM’s preference information, is learned from the scor-
ing results. Thereafter, the learned preference information is used to
obtain a set of weight vectors biased towards the ROI. Note that these
weight vectors are thus used in the baseline MOEA/D to search for DM
preferred solutions. Proof-of-principle results on 3- to 10-objective test
problems demonstrate the effectiveness of our proposed method.

Keywords: Interactive multi-objective optimisation ·
Preference learning · MOEA/D

1 Introduction

The multi-objective optimisation problem (MOP) considered in this paper is
formulated as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω , (1)

where x = (x1, · · · , xn)T is a n-dimensional decision vector and F(x) is an
m-dimensional objective vector. Ω is the feasible set in the decision space R

n

and F : Ω → R
m is the corresponding attainable set in the objective space
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R
m. Without considering the DM’s preference information, given two solutions

x1,x2 ∈ Ω, x1 is said to dominate x2 if and only if fi(x1) ≤ fi(x2) for all
i ∈ {1, · · · ,m} and F(x1) �= F(x2). A solution x ∈ Ω is said to be Pareto-optimal
if and only if there is no solution x′ ∈ Ω that dominates it. The set of all Pareto-
optimal solutions is called the Pareto-optimal set (PS) and their corresponding
objective vectors form the Pareto-optimal front (PF). Accordingly, the ideal
point is defined as z∗ = (z∗

1 , · · · , z∗
m)T , where z∗

i = min
x∈PS

fi(x).

Evolutionary algorithms, which work with a population of solutions and
can approximate a set of trade-off solutions simultaneously, have been widely
accepted as a major tool for solving MOPs. Over the past two decades and
beyond, many efforts have been devoted to developing EMO algorithms, e.g.
NSGA-II [7], IBEA [23] and MOEA/D [22]. The ultimate goal of multi-objective
optimisation is to help the DM find solutions that meet at most her/his prefer-
ence. Supplying a DM with a large amount of trade-off points not only increases
her/his workload, but also provides many irrelevant or even noisy information
to the decision making process. Moreover, due to the curse of dimensionality,
approximating the whole high-dimensional PF not only becomes computation-
ally inefficient (or even infeasible), but also causes a severe cognitive obstacle
for the DM to comprehend the high-dimensional data. To facilitate the decision
making process, it is more practical to incorporate the DM’s preference informa-
tion into the search process. By doing so, it allows the computational efforts to
be concentrated on the ROI and thus has a better approximation therein. Gener-
ally speaking, preference information can be incorporated a priori, posteriori or
interactively. Note that the traditional EMO just goes along the posteriori way
whose disadvantages have been described before. When the preference infor-
mation is elicited a priori, it is used to guide the solutions towards the ROI.
However, it is non-trivial to faithfully model the preference information before
solving the MOP at hand. In practice, articulating the preference information
in an interactive manner, which has been studied in the multi-criterion deci-
sion making (MCDM) field for over four decades, seems to be interesting. This
enables DMs to progressively learn and understand the characteristics of the
MOP at hand and adjust their preference information. As a consequence, the
solutions are effectively driven towards the ROI.

In the past decade, the development for hybrid EMO-MCDM schemes, where
the DM’s preference information is integrated into EMO either a priori or inter-
actively, have become increasingly popular. Generally speaking, their ideas can
be briefly summarised as the following five categories.

1. The first one employs weight information, e.g. relative importance order [12],
to model DM’s preference information. However, it is difficult to control the
guidance of the search towards the ROI and there is no obvious motivation
to utilise weights in an interactive manner.

2. The second sort modifies the trade-off information by either classifying objec-
tives into different levels and priorities or expressing DM’s preference informa-
tion via fuzzy linguistic terms according to different aspiration levels, e.g. [19].
This is method is interesting yet complicated, especially when the number of
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objectives becomes large [20]. In addition, using such approach interactively
increases the DM’s burden.

3. The third category tries to bias the density of solutions towards the ROI by
considering DM’s preference information, e.g. [4]. However, density/diversity
management itself in EMO is difficult, especially in a high-dimensional space.

4. The fourth class, as a recent trend, combines DM’s preference information
with performance indicators in algorithm design, e.g. [21]. Nevertheless, the
computational cost of certain popular performance indicator, e.g. hypervol-
ume [1] increases exponentially with the number of objectives.

5. The last one uses aspiration level vector, which represents the DM’s desired
values of each objective, to assist the search process, e.g. [10,13]. As reported
in [3], aspiration level vector have been recognised as one of the most popu-
lar ways to elicit DM’s preference information. Without a demanding effort
from the DM, she/he is able to guide the search towards the ROI even when
encountering a large number of objectives.

Take MOEA/D, a state-of-the-art EMO algorithm, as the baseline, this
paper develops a simple yet effective progressive preference learning paradigm.
It progressively learns an approximated value function (AVF) from the DM’s
behaviour in an interactive manner. The learned preference information is thus
used to guide the population towards the ROI. Generally speaking, the progres-
sive preference learning paradigm consists of the following three modules.

– Optimisation module: it uses the preference information elicited from the
preference elicitation module to find the preferred solutions. In principle, any
EMO algorithm can be used as the search engine while this paper takes
MOEA/D for proof-of-principle purpose.

– Consultation module: it is the interface by which the DM interacts with the
optimisation module. It supplies the DM with a few incumbent candidates
to score. Thereafter, the scored candidates found so far are used to form the
training data, based on which a machine learning algorithm is applied to find
an AVF that models the DM’s preference information.

– Preference elicitation module: it aims at translating the preference informa-
tion learned from the consultation module in the form that can be used in
MOEA/D. In particular, the learned preference information is used to obtain
a set of weight vectors biased towards the ROI.

In the remaining paragraphs, the technical detail of the progressive prefer-
ence learning for MOEA/D will be described step by step in Sect. 2. Proof-of-
principle experiments, shown in Sects. 3 and 4, demonstrate the effectiveness of
our proposed algorithm for finding DM preferred Pareto-optimal solutions on
benchmark problems with 3 to 10 objectives. At the end, Sect. 5 concludes this
paper and provides some future directions.

2 Proposed Method

Generally speaking, the method proposed in this paper is a generic framework
for progressive preference learning. It consists of three interdependent modules,
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i.e. consultation, preference elicitation and optimisation. For proof-of-principle
purpose, this paper uses the state-of-the-art MOEA/D as the search engine in
the optimisation module. It uses the preference information provided by the pref-
erence elicitation module to approximate DM’s preferred solutions. In addition,
it periodically supplies the consultation module with a few incumbent candidates
to score. Since no modification has been done upon MOEA/D, we do not intend
to delineate its working mechanism here while interested readers are suggested
to refer to [22] for details. The following paragraphs will focus on describing the
consultation and preference elicitation modules.

2.1 Consultation Module

The consultation module is the interface where the DM interacts with, and
expresses her/his preference information to the optimisation module. In prin-
ciple, there are various ways to represent the DM’s preference information. In
this paper, we assume that the DM’s preference information is represented as
a value function. It assigns a solution a score that represents its desirability to
the DM. The consultation module mainly aims to progressively learn an AVF
that approximates the DM’s ‘golden’ value function, which is unknown a priori,
by asking the DM to score a few incumbent candidates. We argue that it is
labor-intensive to consult the DM every generation. Furthermore, as discussed
in [2], consulting the DM at the early stage of the evolution might be detrimental
to the decision-making procedure, since the DM can hardly make a reasonable
judgement on poorly converged solutions. In this paper, we fix the number of
consultations. Before the first consultation session, the EMO algorithm runs
as usual without considering any DM’s preference information. Afterwards, the
consultation session happens every τ > 1 generations.

There are two major questions to address when we want to approximate the
DM’s preference information: (1) which solutions can be used for scoring? and
(2) how to learn an appropriate AVF?

Scoring. To relieve the DM’s cognitive load and her/his fatigue, we only ask
the DM to score a limited number (say 1 ≤ μ � N) of incumbent candidates
chosen from the current population. Specifically, we use the AVF learned from
the most recent consultation session to score the current population. The μ
solutions having the best AVF values are used as the incumbent candidates, i.e.
deemed as the ones that are satisfied by the DM most. However, if it is at the
first consultation session, no AVF is available for scoring. In this case, we first
initialise another μ ‘seed’ weight vectors, which can either be generated by the
Das and Dennis’ method [6] or chosen from the weight vectors initialised in the
optimisation module. Afterwards, for each of these ‘seed’ weight vectors, we find
the nearest neighbour from the weight vectors initialised in the optimisation
module. Then, the solutions associated with these selected weight vectors are
used as the initial incumbent candidates.
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Learning. In principle, many off-the-shelf machine learning algorithms can be
used to learn the AVF. In this paper, we treat it as a regression problem and
use the Radius Basis Function network (RBFN) [5] to serve this purpose. In
particular, RBFN, a single-layer feedforward neural network, is easy to train and
its performance is relatively insensitive to the increase of the dimensionality.

Let D = {(F(xi), ψ(xi))}Mi=1 denote the dataset for training the RBFN. The
objective values of a solution xi are the inputs and its corresponding value
function ψ(xi) scored by the DM is the output. In particular, we accumulate
every μ solutions scored by the DM to form D. An RBFN is a real-valued function
Φ : R

m → R. Various RBFs can be used as the activation function of the
RBFN, such as Gaussian, splines and multiquadrics. In this paper, we consider
the following Gaussian function:

ϕ = exp(−‖F(x) − c‖
σ2

), (2)

where σ > 0 is the width of the Gaussian function. Accordingly, the AVF can
be calculated as:

Φ(x) = ω0 +
NR∑

i=1

ωi exp(−‖F(x) − ci‖
σ2

), (3)

where NR is the number of RBFs, each of which is associated with a different
centre ci, i ∈ {1, · · · ,NR}. ωi is the network coefficient, and ω0 is a bias term,
which can be set to the mean of the training data or 0 for simplicity. In our
experiment, we use the RBFN program newrb provided by the Neural Network
Toolbox from the MATLAB1.

2.2 Preference Elicitation Module

The basic idea of MOEA/D is to decompose the original MOP into several sub-
problems and it uses a population-based technique to solve these subproblems
in a collaborative manner. In particular, this paper uses the Tchebycheff func-
tion [16–18] to form a subproblem as follows:

minimize g(x|w, z∗) = max
1≤i≤m

|fi(x) − z∗
i |/wi

subject to x ∈ Ω
(4)

where z∗ is the ideal point and w is the weight vector associated with this
subproblem. Since the optimal solution of each subproblem is a Pareto-optimal
solution of the original MOP, MOEA/D can in principle approximate the whole
PF with a necessary diversity by using a set of evenly distributed weight vectors
W = {wi}Ni=1, where N is the population size. When considering the DM’s
preference information, the ROI becomes a partial region of the PF. A natural

1 https://uk.mathworks.com/help/nnet/ug/radial-basis-neural-networks.html.

https://uk.mathworks.com/help/nnet/ug/radial-basis-neural-networks.html
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idea, which translates the DM’s preference information into the form that can
be used in MOEA/D, is to adjust the distribution of weight vectors. Specifically,
the preference elicitation module uses the following four-step process to achieve
this purpose.

Step 1: Use Φ(x) learned in the consultation module to score each member of
the current population P .

Step 2: Rank the population according to the scores assigned in Step 1, and find
the top μ solutions. weight vectors associated with these solutions are
deemed as the promising ones, and store them in a temporary archive
WU := {wUi}µi=1.

Step 3: For i = 1 to μ do
Step 3.1: Find the �N−µ

µ 	 closest weight vectors to wUi according to their
Euclidean distances.

Step 3.2: Move each of these weight vectors towards wUi according to

wj = wj + η × (wUi
j − wj), (5)

where j ∈ {1, · · · ,m}.
Step 3.3: Temporarily remove these weight vectors from W and go to Step 3.

Step 4: Output the adjusted weight vectors as the new W .

In the following paragraphs, we would like to make some remarks on some
important ingredients of the above process.

– In MOEA/D, each solution should be associated with a weight vector. There-
fore, in Step 2, the rank of a solution also indicates the importance of its asso-
ciated weight vector with respect to the DM’s preference information. The
weight vectors stored in WU are indexed according to the ranks of their asso-
ciated solutions. In other words, wU1 represents the most important weight
vector, and so on.

– Step 3 implements the adjustment of the distribution of weight vectors accord-
ing to their satisfaction to the DM’s preference information. Specifically, each
of those μ promising weight vectors is used as a pivot, towards which its
closest �N−µ

µ 	 neighbours are moved according to Eq. 5.
– η in Eq. 5 controls the convergence rate towards the promising weight vector.

For proof-of-principle purpose, we set η = 0.5 in this paper.
– Step 3 is similar to a clustering process, while we give the weight vector,

which has a higher rank, a higher priority to attract its companions.

To better understand this preference elicitation process, Fig. 1 gives an intu-
itive example in a two-objective case. In particular, three promising weight vec-
tors are highlighted by red circles. wU1 has the highest priority to attract its com-
panions, and so on. We can observe that the weight vectors are biased towards
those promising ones after the preference elicitation process.
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Fig. 1. Illustration of the preference elicitation process.

3 Experimental Settings

To validate the effectiveness of our proposed algorithm, dubbed as I-MOEA/D-
PLVF, for approximating the DM preferred solutions, the widely used DTLZ [11]
test problems are chosen to form the benchmark suite. Note that the DTLZ
problems are scalable to any number of objectives. The parameter settings of our
proposed progressive preference learning paradigm are summarised as follows:

– number of incumbent candidates presented to the DM for scoring: μ = 2m+1
at the first consultation session and μ = 10 afterwards;

– number of generations between two consecutive consultation sessions: τ = 25;
– number of weight vectors, population size settings and number function eval-

uations (FEs) are set as suggested in [15]. Due to the page limit, they can be
found in the supplementary document2 of this paper.

– the simulated binary crossover [8] is used as the crossover operator while its
probability and distribution index are set as: pc = 1.0 and ηc = 30;

– the polynomial mutation [9] is used as the mutation operator while its prob-
ability and distribution index are set as: pm = 1

n and ηm = 20;

As discussed in [14], the empirical comparison of interactive EMO methods is
tricky since a model of the DM’s behavior is required yet unfortunately sophisti-
cated to represent. In this paper, we use a pre-specified ‘golden’ value function,
which is unknown to an interactive EMO algorithm, to play as an artificial DM.
Specifically, the DM is assumed to minimise the following nonlinear function:

ψ(x) = max
1≤i≤m

|fi(x) − z∗
i |/w∗

i , (6)

where z∗ is set to be the origin in our experiments, and w∗ is the utopia weights
that represents the DM’s emphasis on different objectives. We consider two types
of w∗: one targets the preferred solution on the middle region of the PF while the
other targets the preferred solution on one side of the PF, i.e. biased towards
a particular extreme. Since a m-objective problem has m extremes, there are

2 https://coda-group.github.io/emo19-supp.pdf.

https://coda-group.github.io/emo19-supp.pdf
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m different choices for setting the biased w∗. In our experiments, we randomly
choose one for the proof-of-principle study. Since the Tchebycheff function is used
as the value function and the analytical forms of the test problems are known, we
can use the method suggested in [15] to find the corresponding Pareto-optimal
solution (also known as the DM’s ‘golden’ point) with respect to the given w∗.
Detailed settings of w∗ and the corresponding DM’s ‘golden’ point can be found
in the supplementary document of this paper.

To evaluate the performance of I-MOEA/D-PLVF for approximating the
ROI, we consider using the approximation error of the obtained population P
with respect to the DM’s ‘golden’ point zr as the performance metric. Specifi-
cally, it is calculated as:

E(P ) = min
x∈P

dist(x, zr) (7)

where dist(x, zr) is the Euclidean distance between zr and a solution x ∈ P in
the objective space.

To demonstrate the importance of using the DM’s preference information,
we also compare I-MOEA/D-PLVF with its corresponding baseline algorithms
without considering the DM’s preference information. In our experiments, we run
each algorithm independently 21 times with different random seeds. In the corre-
sponding table, we show the results in terms of the median and the interquartile
range (IQR) of the approximation errors obtained by different algorithms. To
have a statistical sound comparison, we use the Wilcoxon signed-rank test with
a 95% confidence level to validate the significance of the better results.

4 Empirical Results

From the results shown in Table 1, as we expected, I-MOEA/D-PLVF shows over-
whelming superiority over the baseline MOEA/D for approximating the DM’s

Table 1. Performance comparisons of the approximation errors (median and the corre-
sponding IQR) obtained by I-MOEA/D-PLVF versus the baseline MOEA/D on DTLZ1
to DTLZ4 test problems.

DTLZ1 DTLZ2
m ROI I-MOEA/D-PLVF MOEA/D I-MOEA/D-PLVF MOEA/D

3
c 4.213E-4(2.87E-3) 3.104E-2(3.18E-3) 1.026E-2(1.78E-2) 1.030E-1(6.35E-3)
b 1.471E-3(2.87E-3) 3.103E-2(3.30E-3) 8.832E-3(1.09E-2) 9.103E-2(2.56E-3)

5
c 4.173E-3(1.73E-2) 5.262E-2(1.90E-2) 1.721E-2(2.86E-2) 2.417E-1(1.90E-2)
b 1.082E-2(2.09E-2) 7.648E-2(1.65E-2) 5.082E-2(4.73E-2) 2.049E-1(1.45E-2)

8
c 2.130E-3(1.71E-2) 1.484E-2(2.21E-3) 1.625E-2(1.79E-1) 2.615E-1(1.52E-2)
b 1.012E-2(1.03E-1) 5.534E-2(1.12E-2) 4.185E-2(1.10E-1) 1.250E-1(1.05E-2)

10
c 1.269E-1(2.71E-1) 1.789E-1(1.10E-3) 1.087E-1(1.62E-1) 7.386E-1(8.54E-2)
b 1.543E-1(1.77E-1) 2.634E-1(5.05E-3) 1.183E-1(2.08E-1) 2.596E-1(2.88E-2)

DTLZ3 DTLZ4
m ROI I-MOEA/D-PLVF MOEA/D I-MOEA/D-PLVF MOEA/D

3
c 7.214E-4(7.26E-3) 1.055E-1(1.59E-3) 1.303E-2(2.78E-2) 1.042E-1(1.89E-3)
b 2.811E-3(1.09E-2) 8.678E-2(7.75E-3) 7.634E-3(8.76E-3) 9.469E-2(8.07E-3)

5
c 1.128E-2(8.77E-2) 2.442E-1(4.62E-2) 2.762E-2(5.74E-2) 2.569E-1(2.37E-3)
b 1.792E-2(1.53E-1) 2.162E-1(2.35E-2) 3.717E-2(6.28E-2) 2.121E-1(6.66E-3)

8
c 6.821E-2(2.78E-1) 4.277E-1(9.56E-3) 6.538E-2(8.62E-2) 7.236E-1(1.07E-2)
b 8.697E-2(1.63E-1) 1.574E-1(1.32E-2) 1.271E-1(1.86E-1) 2.164E-1(1.69E-2)

10
c 2.168E-1(5.71E-1) 7.365E-1(2.81E-2) 1.927E-1(2.63E-1) 8.676E-1(1.07E-1)
b 1.629E-1(2.55E-1) 3.344E-1(6.99E-2) 1.018E-1(3.28E-1) 2.055E-1(4.21E-2)

The ROI column gives the type of the DM supplied utopia weights. c indicates the preference on the middle
region of the PF while b indicates the preference on an extreme. All better results are with statistical significance
according to Wilcoxon signed-rank test with a 95% confidence level, and are highlighted in bold face with a grey
background.
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‘golden’ solution. In particular, they obtain statistically significantly better met-
ric values (i.e. smaller approximation error) on all test problems. In the following
paragraphs, we discuss the results from the following aspects.

– Due to the page limit, we only plot some results on 3- and 10-objective sce-
narios in Figs. 2, 3, 4 and 5, while more comprehensive results can be found
in the supplementary document. From these plots, we can observe that I-
MOEA/D-PLVF is always able to find solutions that well approximate the
unknown DM’s ‘golden’ point with a decent accuracy as shown in Table 1. In
contrast, since the baseline MOEA/D is designed to approximate the whole
PF, it is not surprised to see that most of their solutions are away from the
DM’s ‘golden’ point. Although some of the solutions obtained by the baseline
MOEA/D can by chance pass the ROI, i.e. the vicinity of the DM’s ‘golden’
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Fig. 2. Solutions obtained on 3-objective DTLZ1 to DTLZ4 problems where zr, which
prefers the middle region of the PF, is represented as the red dotted line. (Color figure
online)

0
0.5

1

0

0.5
1

0

0.5

1

f1
f2

f 3

0
0.5

1

0

0.5
1

0

0.5

1

f1
f2

f 3

0
0.25

0.5

0

0.25

0.5

0

0.25

0.5

f1
f2

f
3

0
0.25

0.5

0

0.25

0.5

0

0.25

0.5

f1
f2

f
3

0
0.5

1

0

0.5
1

0

0.5

1

f1
f2

f 3

0
0.5

1

0

0.5
1

0

0.5

1

f1
f2

f 3

I-MOEA/D-PLVF MOEA/D

DTLZ1

DTLZ2

DTLZ3

DTLZ4

0
0.5

1

0

0.5
1

0

0.5

1

f1
f2

f 3

0
0.5

1

0

0.5
1

0

0.5

1

f1
f2

f 3

DTLZ1

DTLZ2

DTLZ3

DTLZ4

I-MOEA/D-PLVF MOEA/D

Fig. 3. Solutions obtained on 10-objective DTLZ1 to DTLZ4 problems where zr, which
prefers one side of the PF, is represented as the red dotted line. (Color figure online)



640 K. Li

1 2 3 4 5 6 7 8 9 10
Objective Index

0

0.1

0.2

0.3

0.4

0.5

O
bj

ec
tiv

e 
V

al
ue

1 2 3 4 5 6 7 8 9 10
Objective Index

0

0.1

0.2

0.3

0.4

0.5

O
bj

ec
tiv

e 
V

al
ue

1 2 3 4 5 6 7 8 9 10
Objective Index

0

0.2

0.4

0.6

0.8

1

O
bj

ec
tiv

e 
V

al
ue

1 2 3 4 5 6 7 8 9 10
Objective Index

0

0.2

0.4

0.6

0.8

1
O

bj
ec

tiv
e 

V
al

ue

1 2 3 4 5 6 7 8 9 10
Objective Index

0

0.2

0.4

0.6

0.8

1

O
bj

ec
tiv

e 
V

al
ue

1 2 3 4 5 6 7 8 9 10
Objective Index

0

0.2

0.4

0.6

0.8

1

O
bj

ec
tiv

e 
V

al
ue

1 2 3 4 5 6 7 8 9 10
Objective Index

0

0.2

0.4

0.6

0.8

1

O
bj

ec
tiv

e 
V

al
ue

1 2 3 4 5 6 7 8 9 10
Objective Index

0

0.2

0.4

0.6

0.8

1

O
bj

ec
tiv

e 
V

al
ue

DTLZ1

DTLZ2

DTLZ3

DTLZ4

I-MOEA/D-PLVF MOEA/D I-MOEA/D-PLVF MOEA/D

Fig. 4. Solutions obtained on 10-objective DTLZ1 to DTLZ4 problems where zr, which
prefers the middle of the PF, is represented as the red dotted line. (Color figure online)
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Fig. 5. Solutions obtained on 10-objective DTLZ1 to DTLZ4 problems where zr, which
prefers one side of the PF, is represented as the red dotted line. (Color figure online)

point, they still have an observable distance from the DM’s ‘golden’ point.
Moreover, the other solutions away from the ROI will unarguably result in
the cognitive noise to posteriori decision-making procedure, especially for
problems that have many objectives, e.g. as shown in Figs. 4 and 5.

– From the results shown in Table 1, we find that it seems to be more difficult
for the baseline MOEA/D to find the DM’s preferred solution on the middle
region of the PF than those biased toward a particular extreme of the PF.
This is because if the ROI is on one side of the PF, it is more or less close to the
boundary. The baseline MOEA/D, which were originally designed to approx-
imate the whole PF, can always find solutions on the boundary, whereas it
becomes increasingly difficult to find solutions on the middle region of the
PF with the increase of the number of objectives. Therefore, the approxima-
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tion error to a DM’s ‘golden’ point on one side of the PF seems to be better
than those on the middle region of the PF. In contrast, since our proposed
I-MOEA/D-PLVF can progressively learn the DM’s preference information
and adjust the search direction, it well approximates the ROI in any part of
the PF.

5 Conclusions

This paper has proposed a simple yet effective paradigm for progressively learn-
ing the DM’s preference information in an interactive manner. It consists of three
modules, i.e. optimisation, consultation and preference elicitation. For proof-of-
principle purpose, this paper uses the state-of-the-art MOEA/D as the baseline
algorithm in the optimisation module. The consultation module aims to progres-
sively learn an AVF that models the DM’s preference information. In particular,
during the consultation session, the DM is presented with a few incumbent can-
didates for scoring according her/his preference. Once the AVF is learned, the
preference elicitation module translates it into the form that can be used in the
optimisation module, i.e. a set of weight vectors that are biased towards the
ROI. Proof-of-principle results on 3- to 10-objective test problems demonstrate
the effectiveness of our proposed I-MOEA/D-PLVF for approximating the DM’s
preferred solution(s).

In principle, the progressive preference learning paradigm proposed in this
paper is a generic framework which can be used to help any EMO algorithm
to approximate DM preferred solution(s) in an interactive manner. For proof-
of-principle purpose, we use MOEA/D as the search engine in the optimisation
module. Therefore, the learned preference information is translated as a set of
biased weight vectors in the preference elicitation module. One of the future
directions is to adapt this to other formats according to the characteristics of
the baseline algorithm. In addition, this paper assumes that the DM’s preference
information is represented as a monotonic value function. However, in practice,
it is not uncommon that the DM judges some of the alternatives to be incom-
parable. How to discriminate the order information from incomparable compar-
isons? Moreover, instead of assigning a scalar score to a solution, it is interesting
to study how to derive the preference information through holistic comparisons
among incumbent candidates. Although this paper has restricted the value func-
tion to be the form as Eq. 6, other more value function formulations can also be
considered. Furthermore, it is interesting to further investigate the robustness
consideration in deriving the AVF. More studies are required to investigate the
side effects brought by the inconsistencies in decision-making and the ways to
mitigate that. Last but not the least, there are a couple of parameters associated
with the proposed progressive preference learning paradigm, i.e. those listed in
Sect. 3. It is important to investigate the effects of these parameters as a part of
future work.
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