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Abstract: Multi-objective optimization problems are ubiquitous in real-world science, engi-
neering and design optimization problems. It is not uncommon that the objective functions are as a
black box, the evaluation of which usually involve time-consuming and/or costly physical experiments.
Data-driven evolutionary optimization can be used to search for a set of non-dominated trade-off solu-
tions, where the expensive objective functions are approximated as a surrogate model. In this paper,
we propose a framework for implementing batched data-driven evolutionary multi-objective optimiza-
tion. It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can
be applied in a plug-in manner. In particular, it has two unique components: 1) based on the Karush-
Kuhn-Tucker conditions, a manifold interpolation approach that explores more diversified solutions
with a convergence guarantee along the manifold of the approximated Pareto-optimal set; and 2) a
batch recommendation approach that reduces the computational time of the optimization process by
evaluating multiple samples at a time in parallel. Experiments on 136 benchmark test problem in-
stances with irregular Pareto-optimal front shapes against six state-of-the-art surrogate-assisted EMO
algorithms fully demonstrate the effectiveness and superiority of our proposed framework. In particu-
lar, our proposed framework is featured with a faster convergence and a stronger resilience to various
PF shapes.

Keywords: Multi-objective optimization, surrogate modeling, Karush–Kuhn–Tucker conditions,
evolutionary algorithm

1 Introduction

Real-world problems in science, engineering and design often involve multiple conflicting objectives,
as known as multi-objective optimization problems (MOPs). For example, in the optimal design of a
water distribution system, many indicators need to be considered to achieve a trade-off between capital
and/or operational cost and performance type benefits such as pressure deficit, reliable configurations
under abnormal conditions and network resilience index. There does not exist a global optimal solution
that optimizes all conflicting objectives. Instead, multi-objective optimization mainly aims to find a
set of trade-off alternatives that compromise among different objectives before being handed over for
multi-criterion decision-making.

Evolutionary algorithms (EAs) have been widely recognized as a major approach for multi-objective
optimization given its population-based property for approximating a set of non-dominated solutions
in a single run [1]. Over the past three decades and beyond, many efforts have been dedicated to the
developments of evolutionary multi-objective optimization (EMO) algorithms. According to their envi-
ronmental selection mechanisms, the existing EMO algorithms can be classified into three categorizes:
1) dominance-based methods, e.g., elitist non-dominated sorting genetic algorithm (NSGA-II) [2], 2)
indicator-based methods, indicator-based EA (IBEA) [3], and 3) decomposition-based methods, e.g.,
multi-objective EA based on decomposition (MOEA/D) [4].

∗Both authors made equal contributions to this paper.
†This manuscript is accepted for publication in the IEEE Transactions on Evolutionary Computation.
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In practice, it is not uncommon that the objective functions of real-world problems are as a black
box and are expensive to evaluate, either computationally or economically. For example, computa-
tional fluid dynamic simulations can take from minutes to hours to carry out a single function evalu-
ation (FE) [5]. Due to the population-based and iterative nature, EAs usually require a vast amount
of FEs to obtain reasonably acceptable solutions. This is unrealistic when FEs are expensive thus it
significantly hinders a wider uptake of EAs in real-world scenarios. To mitigate this issue, surrogate
models, built by data collected from expensive FEs, have emerged as a powerful tool to assist EAs for
solving expensive optimization problems, also known as data-driven evolutionary optimization1 [7]. It
consists of two intertwined design components [6, 7].

• The first one is the surrogate modeling of the expensive objective functions. Many off-the-
shelf machine learning approaches, e.g., support vector machine (SVM) [8], Gaussian process
regression (GPR) or Kriging model [9–11] and radial basis function networks (RBFN) [12–14],
can serve this purpose.

• The other one is the model management that mainly aims to select promising solution(s) output
from a surrogate-assisted search process for conducting expensive FEs. In particular, such search
process can either be driven by the surrogate objective functions directly or combined with the
uncertainty inferred from the model, also known as the acquisition function, e.g., expected
improvement [15], upper confidence bound [16] and probability of improvement [17], in GPR-
assisted EAs [18]. Afterwards, the newly evaluated solutions will thus be used to update the
surrogate model accordingly.

In practice, many physical experiments can be carried out in parallel given the availability of
more than one infrastructure. For example, laboratory technicians often perform experiments with
duplicated setups in parallel to mitigate empirical bias. Likewise, in automated machine learning,
training and validating machine learning models are usually distributed into multiple cores or GPUs
for hyper-parameter optimization. An effective parallelization, also known as batch recommendation
in data-driven evolutionary optimization, are of practical importance to significantly save the com-
putational time by reducing the number of iterations. However, this line of research is relatively
lukewarm in the data-driven evolutionary optimization community [10,19,20].

As discussed in [21], many prevalent test problems (e.g., DTLZ1 to DTLZ4 [22], WFG4 to
WFG9 [23] and LSMOP1 to LSMOP8 [24]) have similar ‘regular’ Pareto-optimal fronts (PFs) char-
acterized as a triangle defined as:

∑p
i=1 f

p
i (x) = 1 where 0 ≤ fi(x) ≤ 1 and i ∈ {1, · · · ,m}. p = 1 in

DTLZ1 and LSMOP1 to LSMOP4, p = 2 in DTLZ2 to DTLZ4, WFG4 to WFG9 and LSMOP5 to
LSMOP8. Unfortunately, it is unrealistic to have such regular PF in real-world MOPs [21]. On the con-
trary, due to the complex and non-linear relationship between objectives, it is not uncommon to have
an irregular PF featured as disconnected, incomplete, degenerated, and/or badly-scaled. Although
there have been growing interests for handling MOPs with irregular PFs in the EMO community
(e.g., [25–27]), it has rarely been considered in the context of data-driven EMO, except for [28].

As discussed in [29], under certain smoothness assumptions, it can be induced from the Karush–Kuhn–Tucker
(KKT) conditions [30] that the Pareto-optimal set (PS) is a piecewise continuous (m−1)-dimensional
manifold in the decision space [31] where m is the number of objectives. Such manifold property can
be used to interpolate new Pareto-optimal solutions such as [32,33]. However, using KKT conditions
needs the access of the analytical information of the objective functions, which is hardly accessible for
black-box multi-objective optimization scenarios.

To address the above issues, this paper proposes a batched data-driven EMO framework based on
manifold interpolation for solving expensive MOPs with various PF shapes. It consists of the following
four major design components.

• Surrogate modeling: For proof-of-concept purposes, GPR and RBFN are respectively used to
build the surrogate model for each computationally expensive objective function in this paper.

1It is called surrogate-assisted EA interchangeably [6] in the literature.
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• Evolutionary search: This step searches for an approximated PF based on the surrogate
objective functions. In particular, any existing EMO algorithm can be used to serve this purpose
where we use NSGA-II, IBEA and MOEA/D for proof-of-concept purposes.

• Manifold interpolation: Based on the KKT conditions, this step is designed to interpolate
new candidate solutions along the manifold of the approximated surrogate Pareto-optimal set
with regard to the non-dominated solutions obtained in the evolutionary search step. Note
that since the surrogate models considered in this paper are continuously differentiable, we can
naturally derive their first- and second-order derivatives of the predicted objective functions.

• Batch recommendation: Two types of simple and effective batch recommendation mechanisms
are proposed to pick up multiple candidate solutions from the non-dominated solutions ob-
tained in the manifold interpolation step for expensive FEs. In particular, one is directly
derived from the native environmental selection mechanism of the EMO algorithm used in the
evolutionary search step while the other is based on the individual Hypervolume contribution.

In experiments, we generate 12 algorithm instantiations of our proposed framework based on the
combinations of two surrogate models, three baseline EMO algorithms and two batch recommendation
mechanisms. Extensive experiments on 168 benchmark test problem instances with both regular and
irregular PFs and a real-world application on hyper-parameter optimization fully demonstrate the
effectiveness and superiority of our proposed algorithms against 7 state-of-the-art data-driven EMO
algorithms. In particular, our proposed framework is featured with a faster convergence and a stronger
resilience to various PF shapes.

The rest of this paper is organized as follows. Section 2 first gives some essential preliminaries
including definitions pertinent to this paper along with a pragmatic overview of the existing develop-
ments in data-driven EMO. Section 3 delineates the technical details of our proposed framework step
by step. The experimental results are presented and analyzed in Section 5. At the end, Section 6
concludes this paper and sheds some lights on potential future directions.

2 Preliminaries

In this section, we first give some basic concepts pertinent to this paper. Thereafter, we briefly
overview some selected developments of data-driven EMO.

2.1 Basic Definitions in Multi-Objective Optimization

The MOP considered in this paper is defined as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω
, (1)

where x = (x1, · · · , xn)T is a decision vector and F(x) is an objective vector. Ω = [xLi , x
U
i ]ni=1 ⊆ Rn

defines the search space. F : Ω→ Rm is the corresponding attainable set in the objective space Rm.

Definition 1. Given two solutions x1,x2 ∈ Ω, x1 is said to dominate x2, denoted as x1 � x2, if and
only if fi(x

1) ≤ fi(x2) for all i ∈ {1, · · · ,m} and F(x1) 6= F(x2).

Definition 2. A solution x∗ ∈ Ω is said to be Pareto-optimal if and only if @x′ ∈ Ω such that x′ � x∗.

Definition 3. The set of all Pareto-optimal solutions is called the Pareto-optimal set (PS), i.e., PS =
{x∗|@x′ ∈ Ω such that x′ � x∗} and their corresponding objective vectors form the Pareto-optimal front
(PF), i.e., PF = {F(x∗)|x∗ ∈ PS}.

Theorem 1 (KKT conditions [30]). Let x∗ be a Pareto-optimal solution of the MOP with m con-
straints {gi(x) ≤ 0}mi=1 and the set of vectors {∇gj(x∗)|j is the index of an active constraint} are

3



x

v1

v2

TxM

�(t)
-✏

✏

v
x

�(t)

Tx(M)

<latexit sha1_base64="coj91o1Kz1fX/jp2NFbY2N5ynH4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WtVtXlfqJI+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz9whYyX</latexit>

0

One-dimensional manifold Two-dimensional manifold

Figure 1: A conceptual illustration of the tangent vector(s) v of a point x on a manifold along with
its corresponding tangent space TxM.

linearly independent. There exists a vector µ = (µ1, · · · , µm)T ∈ Rm, such that:

m∑
i=1

αi∇fi(x∗) +

k∑
j=1

λj∇gj(x∗) = 0

λjgj(x
∗)|kj=1 = 0

, (2)

where αi ≥ 0, ∀i ∈ {1, · · · ,m} and
∑m

i=1 αi = 1.

Remark 1. The objective and constraint functions are assumed to be continuously differentiable in
the KKT conditions.

Remark 2. The MOP (1) considered in this paper does not consider constraints, thus we ignore the∑k
j=1 λj∇gj(x∗) part of equation (2) in the latter derivations.

Corollary 1. The PF is a (m − 1)-dimensional piecewise continuous manifold under the KKT con-
ditions. For any solution x∗ in the PS, there exists an open neighborhood Ξ(x∗) such that the inter-
section of the PF and {F(x̃)|x̃ ∈ Ξ(x∗)} is a (m− 1)-dimensional continuously differentiable manifold
in Rm [32], so as the PS.

Definition 4. Let M be a continuously differentiable manifold, γ : (−ε, ε) → M be a continuously
differentiable curve on this manifold and it passes through x ∈ M where ε > 0. Use t ∈ (−ε, ε) to
parameterize γ as γ(t) where γ(0) = x, the tangent vector of γ(0), denoted as v, is defined as:

v =
d

dt
f ◦ γ(t)

∣∣∣∣
t=0

, (3)

where f ◦ γ(t) : (−ε, ε)→M→ R is a composite mapping.

Definition 5. The set of all tangent vectors at x is called the tangent space of M at x, denoted as
TxM.

Theorem 2. Let M be a smooth manifold and x ∈ M, then dim(TxM) = dim(M), where dim(·)
returns the corresponding dimensionality.

Remark 3. Fig. 1 gives a conceptual illustration of the tangent vector(s) v of a point x on a one-
and a two-dimensional manifold, respectively, along with its corresponding tangent space TxM. In
particular, the number of tangent vectors is dim(TxM).
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2.2 Gaussian Process Regression Model

Given a set of training data D = {(xi, f(xi)}Ni=1, a GPR model aims to learn a latent function g(x)
by assuming f(xi) = g(xi) + ε where ε ∼ N (0, σ2n) is an independently and identically distributed
Gaussian noise. For each testing input vector z∗ ∈ Ω, the mean and variance of the target f(z∗) are
predicted as [34]:

g(z∗) = m(z∗) + k∗T (K + σ2nI)−1(f −m(X)), (4)

V[g(z∗)] = k(z∗, z∗)− k∗T (K + σ2nI)−1k∗, (5)

where X = (x1, · · · ,xN )T and f = (f(x1), · · · , f(xN ))T . m(X) is the mean vector of X, k∗ is the
covariance vector between X and z∗, and K is the covariance matrix of X. In particular, a covariance
function, also known as a kernel, is used to measure the similarity between a pair of data samples x
and x′ ∈ Ω. This paper uses the Matérn 5/2 kernel without loss of generality and it is defined as:

k(x,x′) = σ2n

(
1 +

√
5d

ρ
+

5d2

3ρ2

)
exp

(
−
√

5d

ρ

)
, (6)

where ρ is a positive hyper-parameter of the covariance function and d =
√

(x− x′)T · (x− x′) is the
Euclidean distance between x and x′. The predicted mean g(z∗) is directly used as the prediction of
f(z∗), and the predicted variance V[g(x∗)] quantifies the uncertainty. As recommended in [34], the
hyperparameters are learned by maximizing the log marginal likelihood function defined as:

log p(f |X) = −1

2

(
f −m(X)

)T
(K + σ2nI)−1

(
f −m(X)

)
− 1

2
log |K + σ2nI| −

N

2
log 2π.

(7)

In this paper, we assume that the mean function is a constant 0 and the inputs are noiseless.

2.3 Radial Basis Function Network

A RBFN is a neural network that uses radial basis functions as activation functions [35]. Here we
consider a network with three layers and k ≥ 1 hidden neurons. To interpolate a function by using a
RBFN, it can be represented as the following system of linear equations:

g̃11 g̃12 · · · g̃1k
g̃21 g̃22 · · · g̃2k
...

...
. . .

...
g̃N1 g̃N2 · · · g̃Nk


︸ ︷︷ ︸

G


w1

w2
...
wk


︸ ︷︷ ︸

w

=


b1
b2
...
bN


︸ ︷︷ ︸

b

, (8)

where ∀xi ∈ D and i ∈ {1, · · · , N}, we have bi = f(xi). g̃ij =
∑k

j=1 exp(− 1
2s2
‖xi − cj‖2) and cj ,

j ∈ {1, · · · , k}, is one of the clustering center of D by using the k-means clustering. s and ci are
hyper-parameters of the model determined by D. The weights w∗ = (w∗1, · · · , w∗k)T that minimizes
the error at the output can be computed with w∗ = G+b, i.e., the Moore–Penrose generalized inverse
of a matrix [36]. For a testing input z∗ ∈ Ω, the output of the RBFN is a scalar function of z∗:

g(z∗) =
k∑
i=1

w∗i exp
(
− 1

2s2
‖z∗ − ci‖2

)
. (9)

2.4 Related Works

This section provides a pragmatic overview of the current developments of data-driven EMO. Interested
readers are referred to some excellent survey papers [6, 7, 37].
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ParEGO [9] is one of the earliest attempts that extends the classic efficient global optimization
(EGO) algorithm to the context of multi-objective optimization. During each iteration, it randomly
generates a weight vector to constitute a scalarizing function of the original MOP. It uses a Kriging
model to fit a surrogate model of the underlying scalarizing function, based on which an EA is used
to search for the next point of merit by optimizing the expected improvement. In [38], Emmerich
et al. proposed to use Hypervolume measure as an alternative of scalarizing function to derive a
couple of acquisition functions for multi-objective EGO. The similar idea is further exploited in [39]
and [40]. Later, Zhang et al. [10] proposed a MOEA/D version of EGO, dubbed MOEA/D-EGO.
It applies the GPR to fit a surrogate model for each expensive objective function, based on which
they derived the estimated mean and variance of the corresponding scalarizing function. Then, a
regular MOEA/D routine is used to search for the approximated PF. In addition, they developed a
batch recommendation mechanism to pick up more than one candidate solution for expensive FEs at
the end of each iteration. In [11], K-RVEA is proposed for expensive many-objective optimization
problems. To tackle the problems with irregular PFs, Habib et al. [28] proposed HSMEA that takes
advantages of the interplay of multiple surrogate models and two sets of reference vectors. In addition,
it applies a local search to further exploit high quality infill solutions. To have a well balance between
exploration and exploitation, Wang et al. proposed to tune the hyperparameters of the acquisition
function in EGO according to the search dynamics on the fly [41]. Recently, Song et al. [42] proposed a
Kriging-assisted two-archive EA for expensive many-objective optimization, dubbed KTA2. It uses an
influential point-insensitive model to approximate each objective function. As for the infill criterion, it
proposed an adaptive mechanism to identify the most important requirement on convergence, diversity,
or uncertainty to determine an appropriate sampling strategy for re-evaluations using the expensive
objective functions.

In addition to EGO, some other machine learning models have also been studied in data-driven
EMO. For example, Voutchkov and Keane [43] proposed a simple idea to directly apply a GPR model
to replace the expensive objective functions in NSGA-II. At the end of each iteration, the current best
candidate solutions in terms of ranking and space filling properties are chosen for conducting expensive
FEs. In view of the high computational complexity of GPR, Guo et al. [20] proposed a heterogeneous
ensemble model based on least square SVM and RBFN for surrogate modeling. To identify the infill
solution(s) for expensive FEs, an ensemble generation method is proposed to quantify the uncertainty
of sample points. In [12–14], RBFN are used as the surrogate model to drive the search process.
Instead of a regression model, Pan [44] and Zhang et al. [45] proposed to use a classification model
to drive the surrogate search routine. Differently, Loshchilov [8] and Seah et al. [46] proposed to fit a
surrogate model that predicts the Pareto dominance relation between pairs of solutions.

Different from the above mentioned works, another emerging area is to use transfer learning tech-
niques to boost the search process. For example, Luo et al. [47] proposed to use a multi-task GPR
model to build multiple surrogate models simultaneously for different subregions of the PF. In addition,
a new infill criterion based on the surrogate landscape is proposed to determine the next candidate
solution for conducting the expensive FE. Min et al. [48] proposed to use the transfer stacking tech-
nique to jump start the underlying problem-solving routine by leveraging the model built for other
related problems. In [49], Yang et al. proposed an EA assisted by two surrogate models. One aims
to guide the algorithm to quickly find a promising subregion in the search space and the other model
focuses on leveraging good solutions according to the knowledge transferred from the first model.

In the classic multi-objective optimization literature, the KKT conditions have been applied to
solve bi-objective design optimization problems [50]. Later, this idea was generalized to MOPs with
any number of objectives in theory [32,51]. It is worth noting that all these approaches are developed
upon the assumption that the objective functions are analytically accessible and differentiable. In
addition, they only considered a local expansion of an known Pareto-optimal solution. Another line of
research is [52] that developed a proximity measure based on KKT optimality theory. This measure
was originally designed to evaluate the convergence of a set of non-dominated solutions with regard to
the PS. Later, it has also been used as either a driving force or a termination criterion of a local search
procedure in NSGA-III [53–55]. As for leveraging the manifold properties of PF and PS, Zhang et
al. [29] and Zhou et al. [56] developed a multi-objective estimation of distribution algorithm, dubbed
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Figure 2: Flowchart of the our proposed batched data-driven EMO framework.

RM-MEDA. It has been one of the pioneers to build a probabilistic model of elite solutions as a
(m− 1)-dimensional manifold [29]. Then, offspring are reproduced by sampling from such model.

3 Proposed Algorithm

The flowchart of our proposed batched data-driven EMO framework based on manifold interpolation is
shown in Fig. 2. It starts with an initialization step based on an experimental design method [57].
In this paper, we use the classic Latin hypercube sampling to serve this purpose without loss of
generality. Then, we evaluate the objective function values of these initial samples and store them
in the training dataset. During the main loop, the surrogate modeling step builds a surrogate
model for each expensive objective function based on the up-to-date training dataset. Note that any
continuously differentiable regression model can serve this purpose. For a proof-of-concept purpose,
this paper applies the GPR and RBFN introduced in Sections 2.2 and 2.3 for surrogate modeling. As
for the other three steps, we will delineate their implementations in the following paragraphs.

3.1 Evolutionary Search

The evolutionary search step aims to approximate the PF based on the surrogate model built in the
surrogate modeling step. We argue that any existing EMO algorithm can be used as the surrogate
optimizer in this step. In particular, we directly use the surrogate model to replace the expensive
objective functions in the EMO algorithm. This paper applies three iconic EMO algorithms, i.e.,
NSGA-II, IBEA and MOEA/D, for a proof-of-concept purpose. For the sake of being self-contained,
a description of their working mechanisms can be found in Appendix A.

3.2 Manifold Interpolation

After the evolutionary search step, we obtain a population of solutions P that approximate the
surrogate PF. Here we assume that these solutions are Pareto-optimal thus they all satisfy the KKT
conditions. According to Corollary 1, ∀x ∈ P, the PS segment with regard to an open neighborhood
Ξ(x) is a (m− 1)-dimensional manifold, denoted asMx, so does the corresponding PF segment. The
basic idea of this manifold interpolation step is to interpolate a set of Ñ � 1 new candidate

solutions S = {x̂i}Ñi=1 along the tangent space of x as:

x̂ = x +

m−1∑
i=1

ηivi, (10)

where vi is the i-th tangent vector at x and ηi ∈ (0, 1] is a random scaling factor along that direction.
In the following paragraphs, we will derive a closed form method to calculate the tangent vectors.
To facilitate our derivation, as in Definition 4, we use a parametric form x(t) where t ∈ (−ε, ε) to
represent each solution on a smooth curve passing through x on Mx where x(0) = x.

According to Corollary 1, we have ∀x(t) ∈ Ξ(x) satisfies the KKT conditions. We assume that
there exist a time-varying parameter vector α(t) = (α1(t), · · · , αm(t))T ∈ Rm, t ∈ (−ε, ε), such that:

m∑
i=1

αi(t)∇fi(x(t)) = 0, (11)
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where αi(t) ≥ 0 and
∑m

i=1 αi(t) = 1. fi(x(t)) is actually a composite mapping fi ◦ x(t) : (−ε, ε) →
Mx → R on the manifold as in Definition 4 where i ∈ {1, · · · ,m}. By taking the derivatives of equa-
tion (11) at t = 0, we have:

d

dt

m∑
i=1

αi(t)∇fi(x(t))

∣∣∣∣∣
t=0

= 0,

=⇒
m∑
i=1

α′i(0)∇fi(x(0)) +
( m∑
i=1

αi(0)∇2fi(x(0))
)
x′(0) = 0. (12)

Given that
∑m

i=1 α
′
i(t) = 0, we rewrite equation (12) as a system of linear equations:[

11×m 01×n
JTF(x(0)) HT

F(x(0)) · α(0)

] [
α′(0)
x′(0)

]
= 0, (13)

where JF(x(0)) and HF(x(0)) are the m×n Jacobian matrix and m×m×n Hessian tensor of F(x(0)) =

(f1(x(0)), · · · , fm(x(0)))T , respectively. By solving this system of linear equations (13), we obtain
m− 1 different x′(0), which constitute the m− 1 tangent vectors {vi}m−1i=1 in equation (10).

Remark 4. Let us rewrite equation (12) as follows:

( m∑
i=1

αi(0)∇2fi(x(0)︸ ︷︷ ︸
HF(x(0))·α(0)

)
)

x′(0)︸ ︷︷ ︸
v

= −
m∑
i=1

α′i(0)∇fi(x(0)). (14)

The left hand side of equation (14) is thus a linear combination of {∇fi(x(0))}mi=1 that constitute a
subspace spanned by them. We take the inverse of HF(x(0)) ·α(0) and further derive equation (14) as:

x′(0) =
[
HF(x(0)) · α(0)

]−1[
−

m∑
i=1

α′i(0)∇fi(x(0))
]
. (15)

Remark 5. As shown in equation (10), this manifold interpolation step implements a random
walk along the tangent space of x. In principle, the generated solutions constitute a piece-wise linear
approximation to the corresponding PS and PF segments within a neighborhood. Fig. 3 gives two
examples of manifold interpolation at a given point on the 2-objective ZDT3 and the 3-objective DTLZ2.

To constitute the Jacobian matrix and the Hessian tensor used in equation (13), we need to access
the first- and second-order derivatives of the underlying objective functions. In this paper, since the
objective functions are modeled by GPR and RBFN, which are continuously differentiable, we can
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naturally derive the first- and second-order derivatives of the predicted mean function with regard to
a solution x. Specifically, as for the GPR, we have:

∂g(x)

∂x
=
∂k∗

∂x
K−1f ,

∂2g(x)

∂x2
=
∂2k∗

∂x2
K−1f , (16)

where the first- and second-order derivatives of k∗, i.e., the covariance vector between P and x, are
calculated as:

∂k∗

∂x
= − 5d

3ρ2

(
1 +

√
5d

ρ

)
σ2n exp

(
−
√

5d

ρ

)
∂d

∂x
, (17)

∂2k∗

∂x2
= − 5

3ρ2

(
1 +
√

5d− 5d2

ρ2

)
σ2n exp

(
−
√

5d

ρ

)(
∂d

∂x

)2

(18)

− 5d

3ρ2

(
1 +

√
5d

ρ

)
σ2n exp

(
−
√

5d

ρ

)
∂2d

∂x2
,

where d is the vector of distances between P and x. As for the RBFN, we have the first-order derivative
as:

∂g(x)

∂xi
= − 1

s2

k∑
j=1

(x− cj)g(x), (19)

and the second-order derivative as:

∂2g(x)

∂xi∂xj
=

{
1
s4
∑k

t=1(xi − ctj)(xi − ctj)g(x), if i 6= j
1
s4
∑k

t=1

(
(xi − cdi )2 − s2

)
g(x), if i = j

. (20)

In summary, the working mechanism of this manifold interpolation step is given as follows.

Step 1: Initialize the candidate solution set S = ∅.

Step 2: For i = 1, · · · , N , do

Step 2.1: Calculate the tangent vectors of xi ∈ P by solving the system of linear equations
given in equation (13).

Step 2.2: Use equation (10) to generate a set of N = Ñ
N candidate solutions S = {x̂k|x̂k =

xi +
∑m−1

j=1 ηjvj and ηj ∈ (0, 1]}Nk=1.

Step 2.3: Remove invalid solutions in S outside of Ω.

Step 2.4: S = S⋃S.

Step 3: Use the GPR model to predict the objective function values of solutions in S.

Step 4: Output the non-dominated solutions in S.

3.3 Batch Recommendation

This step is also known as the infill criterion in the surrogate-assisted EA literature. It aims to pick
up ξ ≥ 1 promising solutions from C = P⋃S and evaluate them by using the expensive objective
functions. These newly evaluated solutions are then used to update the training dataset for the
next iteration. Different from most, if not all, works using GPR as the surrogate model, our infill
criterion does not rely on an uncertainty quantification measure, also known as acquisition function in
the Bayesian optimization literature [58]. Furthermore, selecting a batch of samples to evaluate can
significantly reduce the overhead for surrogate modeling. More specifically, we propose two alternative
ways to implement this batch recommendation step.

9



• The first one is based on the individual Hypervolume contribution (IHV), independent of the
underlying baseline algorithm. We calculate the IHV of each candidate solution x ∈ C as:

IHV(x) = HV(C)− HV(C \ {x}), (21)

where HV(C) evaluates the Hypervolume (HV) [59] of C. Then, the top ξ solutions in C with the
largest IHV are picked up for the expensive evaluations.

• The other one is directly derived from the native environmental selection of the baseline EMO
algorithm used in the evolutionary search step.

– If the baseline algorithm is NSGA-II, we propose a four-step process for the batch recom-
mendation.

Step 1: Identify the non-dominated solutions in C and store them in C.
Step 2: Use N evenly distributed weight vectors to divide the objective space into N subregions

and associate each solution in C to its closest weight vector with the smallest acute
angle.

Step 3: Pick up the best solution with the largest crowding distance for each subregion to
constitute C̃.

Step 4: Pick up the top ξ solutions from C̃ with the largest crowding distances.

Remark 6. Note that the calculation of crowding distances is carried out separately with regard
to each subregion. In other words, each solution only consider its closest neighbor lying in the
same subregion.

– If the baseline algorithm is IBEA, we can directly use its fitness function to choose ξ best
solutions.

– If the baseline algorithm is MOEA/D, we propose the following three-step process for the
batch recommendation.

Step 1: For each subproblem g(·|wi, z∗) where i ∈ {1, · · · , N}, identify the best solution xi∗ in
C:

xi∗ = argmin
x∈C

g(x|wi, z∗), (22)

Step 2: Calculate the fitness improvement on each subproblem with regard to the previous
iteration.

∆i =
g(x̂i∗|wi, z∗)− g(xi∗|wi, z∗)

g(x̂i∗|wi, z∗)
, (23)

where i ∈ {1, · · · , N} and x̂i∗ is the best solution of the i-th subproblem in the previous
iteration.

Step 3: Pick up the top ξ solutions having the largest fitness improvements.

3.4 Algorithm Instances

As introduced in Section 3.1, any existing EMO algorithm can be used in the evolutionary search

step. With regard to the two batch recommendation methods introduced in Section 3.3, we propose
6 algorithm instances for proof-of-concept purposes, dubbed as DMI-x-IHV by using the IHV for the
batch recommendation or DMI-x by using the native environmental selection, respectively, where x is
NSGA-II, IBEA or MOEA/D. Since we consider two different surrogate models, i.e., GPR and RBFN,
in the surrogate modeling step, there are 12 algorithm instances in total.
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3.5 Time Complexity Analysis

The initialization step has a linear complexity and is negligible. The complexity of the surrogate

model step depends on the model, i.e., GPR is O(N3) and RBFN is O(N2). The evolutionary

search step is governed by the corresponding baseline EMO algorithm, i.e., NSGA-II and IBEA are
O(N2) and MOEA/D is O(TN) where T is the neighborhood size. In the manifold interpolation

step, interpolating new solutions is linear while the complexity is governed by its last step that selects
non-dominated solutions from S, i.e., O(Ñ2). If we directly use the native environmental selection
of the baseline EMO algorithm used in the evolutionary search step, the time complexity of the
batch recommendation step is governed by the corresponding algorithm, i.e., NSGA-II and IBEA are

O( Ñ
2

N ) and MOEA/D is O(TN). Otherwise, it is O(|C|m) if we use IHV instead. All in all, the most
time consuming part is the batch recommendation step. Therefore, the worst case complexity of our
proposed framework is O(|C|m).

4 Experimental Setup

This section introduces the experimental settings for validating the effectiveness of our proposed
batched data-driven EMO framework compared against seven state-of-the-art algorithms.

4.1 Benchmark Test Problems

In our empirical study, we consider benchmark test problems with both regular and irregular PF
shapes to constitute our benchmark suite. More specifically, ZDT1, ZDT2, ZDT4, ZDT6, and DTLZ1
to DTLZ4 constitute the problems with regular PFs. As for those with irregular PFs, we have
ZDT3 [60], DTLZ7 [22], minus DTLZ2 [61], mDTLZ2 [62], WFG2 [23], WFG41 to WFG48 [63].
Furthermore, based on ZDT3, DTLZ7 and WFG2, we develop a series of problems (dubbed ZDT3?,
DTLZ7? and WFG2?) with a controllable number disconnected regions and imbalanced sizes. Their
mathematical definitions and properties can be found in Appendix B. The number of objectives is set
to m = 2 for the ZDT and m = 3 for the DTLZ problems. As for the WFG problems, we consider
both 2- and 3-objective cases. The number of variables is set as n ∈ {5, 10, 20, 30} respectively for each
benchmark test problem. In total, there are 168 test problem instances considered in our experiments.

4.2 Peer Algorithms and Parameter Settings

To validate the competitiveness of our proposed algorithms, we compare their performance with
seven state-of-the-art algorithms in the literature, including ParEGO [9], MOEA/D-EGO [10], K-RVEA [11],
EIM [19], TSMEA [64], HSMEA [28] and KTA2 [42]. We do not intend to delineate their working mechanisms
here while interested readers are referred to their original papers for details.

The parameter settings are listed as follows.

• Number of function evaluations (FEs): The initial sampling size is set to 11 × n − 1 for all
algorithms and the maximum number of FEs is set as 150 and 250 for m = 2 and 3, respectively.

• Reproduction operators: The parameters associated with the simulated binary crossover and

polynomial mutation are set as pc = 1.0, ηc = 20, pm = 1
n , ηm = 20. As for those use differential

evolution for offspring reproduction, we set CR = F = 0.5.

• Kriging models: As for the algorithms that use Kriging for surrogate modeling, the corresponding
hyperparameters of the MATLAB Toolbox DACE [65] is set to be within the range [10−5, 105].

• Batch size ξ: It is set as ξ = 10 for our proposed algorithms and ξ = 5 is set in MOEA/D-EGO,
K-RVEA and HSMEA.

• Number of interpolated solutions Ñ : This parameter controls the number of solutions tend to

be generated by the manifold interpolation step and it is set as Ñ = 100 in our experiments.
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• Number of repeated runs: Each algorithm is independently run on each test problem for 31
times with different random seeds.

4.3 Performance Metrics and Statistical Tests

In our experiments, we use the HV and IGD+ [66] as the performance metrics to evaluate the perfor-
mance of different peer algorithms. To have a statistical interpretation of the significance of comparison
results, we use the following three statistical measures in our empirical study.

• Wilcoxon signed-rank test [67]: This is a non-parametric statistical test that makes no assump-
tion about the underlying distribution of the data and has been recommended in many empirical
studies in the EA community [68]. In particular, the significance level is set to p = 0.05 in our
experiments.

• Scott-Knott test [69]: Instead of merely comparing the raw HV and IGD+ values, we apply
the Scott-Knott test to rank the performance of different peer techniques over 31 runs on each
test problem. In a nutshell, the Scott-Knott test uses a statistical test and effect size to divide
the performance of peer algorithms into several clusters. In particular, the performance of peer
algorithms within the same cluster are statistically equivalent. Note that the clustering process
terminates until no split can be made. Finally, each cluster can be assigned a rank according to
the mean HV and IGD+ values achieved by the peer algorithms within the cluster. In particular,
the smaller the rank is, the better performance of the algorithm achieves.

• A12 effect size [70]: To ensure the resulted differences are not generated from a trivial effect,
we apply A12 as the effect size measure to evaluate the probability that one algorithm is better
than another. Specifically, given a pair of peer algorithms, A12 = 0.5 means they are equivalent.
A12 > 0.5 denotes that one is better for more than 50% of the times. 0.56 ≤ A12 < 0.64 indicates
a small effect size while 0.64 ≤ A12 < 0.71 and A12 ≥ 0.71 mean a medium and a large effect
size, respectively.

Note that both Wilcoxon signed-rank test and A12 effect size are also used in the Scott-Knott test for
generating clusters.

5 Empirical Studies

We seek to answer the following research questions (RQs) through our empirical study in the following
paragraphs.

• RQ1: Given a surrogate model, how is the performance comparison among its six algorithm
instances?

• RQ2: How is the performance comparison when using different surrogate model?

• RQ3: How is the performance of our proposed algorithm instances compared against state-of-
the-art peer algorithms in the literature?

• RQ4: What are the benefits of manifold interpolation?

• RQ5: What are the benefits of batch recommendation?

• RQ6: What are the impacts of hyper-parameters?

• RQ7: How is performance of the proposed algorithm in real-world applications?
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Figure 4: Violin plots of Scott-Knott test ranks of HV and IGD+ achieved by each of the six algorithm
instances of our proposed framework by using GPR and RBFN in the surrogate modeling step,
respectively (the smaller rank is, the better performance achieved).

DMI-NSGA-II

DMI-NSGA-II-IH
V

DMI-IBEA

DMI-IBEA-IHV

DMI-MOEA/D

DMI-MOEA/D-IHV

0

200

400

600

800
806

569 599

439

573

340

S
u
m

of
S
co

tt
-K

n
o
tt

te
st

ra
n
k
s

(H
V

)

DMI-NSGA-II

DMI-NSGA-II-IH
V

DMI-IBEA

DMI-IBEA-IHV

DMI-MOEA/D

DMI-MOEA/D-IHV

0

200

400

600

800
786

471

579

467

573

329

S
u
m

of
S
co

tt
-K

n
o
tt

te
st

ra
n
k
s

(H
V

)

GPR RBFN GPR RBFN

DMI-NSGA-II

DMI-NSGA-II-IH
V

DMI-IBEA

DMI-IBEA-IHV

DMI-MOEA/D

DMI-MOEA/D-IHV

0

200

400

600

800 758

631
719

627
688

467

S
u
m

of
S
co

tt
-K

n
o
tt

te
st

ra
n
k
s

(I
G

D
+

)

DMI-NSGA-II

DMI-NSGA-II-IH
V

DMI-IBEA

DMI-IBEA-IHV

DMI-MOEA/D

DMI-MOEA/D-IHV

0

200

400

600

800 778

673
757

617
665

443

S
u
m

of
S
co

tt
-K

n
o
tt

te
st

ra
n
k
s

(I
G

D
+

)

Figure 5: Bar charts of the total Scott-Knott test ranks of HV and IGD+ achieved by each of the six
algorithm instances of our proposed framework by using GPR and RBFN in the surrogate modeling

step, respectively (the smaller rank is, the better performance achieved).

5.1 Comparisons of six algorithm instances

Since we consider two different models (i.e., GPR and RBFN as introduced in Sections 2.2 and 2.3)
in the surrogate modeling step, this subsection plans to study the performance comparison of six
different algorithm instances under these two models separately. The statistical comparison results of
both HV and IGD+ values, based on the Wilcoxon signed-rank test, among six algorithm instances
introduced in Section 3.4 are given in Tables 1 to 8 of our supplementary materials2. From these
results, we can see that the HV and IGD+ values obtained by different algorithms are close to each
other; while the best algorithm alternates across different test problem instances.

To facilitate a better ranking among these algorithms, we apply the Scott-Knott test to classify
them into different groups according to their performance on each test problem instance. Due to
the large number of test problem instances used in our experiments, it will be messy if we list all
ranking results (168 × 6× 2 = 2, 016 in total) obtained by the Scott-Knott test collectively. Instead,
to have a better interpretation of the comparison among different algorithm instances, we pull all
the Scott-Knott test results together (with regard to HV and IGD+ respectively) and show their
distribution and variance as violin plots in Fig. 4. In addition, to facilitate an overall comparison,
we further summarize the corresponding Scott-Knott test results obtained across all test problem
instances for each algorithm instance and show them as the bar charts in Fig. 5. From these results,
we can see that using the IHV in the batch recommendation has shown to be consistently better than
the native environmental selection mechanism in NSGA-II, IBEA and MOEA/D. In particular, we
clearly see that DMI-MOEA/D-IHV is the best algorithm instance of our proposed framework given that
1) its performance has been classified into the best group in most comparisons as the violin plots
shown in Fig. 4; and 2) it obtains the smallest summation rank as shown in Fig. 5 (it is at least 30%
better than the other five peer algorithms). DMI-NSGA-II is the worst algorithm instance, the inferior
results obtained by which can be attributed to the use of the crowding distance. In particular, due to
a large number of candidates solutions generated by the manifold interpolation, the overly crowded
local niche makes the crowding distance less discriminative. As the example shown in Fig. 7, since the
interpolated solutions are heavily crowded, the crowding distance always recommends the one lying
in the boundary of the interpolated region whereas the internal solutions are ignored. In this case, it
compromises the extra diversity provided by the manifold recommendation step. However, by using
the IHV as an alternative of the crowding distance in the batch recommendation, the performance of
DMI-NSGA-II-IHV is significantly promoted while it even obtains a better ranking than DMI-MOEA/D

and DMI-IBEA.
At the end, we choose DMI-MOEA/D-IHV as a representative algorithm to compare the difference of

2The supplementary materials can be found in https://tinyurl.com/3z4y57ec.

13

https://tinyurl.com/3z4y57ec


DMI-NSGA-II

DMI-IBEA

DMI-MOEA/D

DMI-NSGA-II-IH
V

DMI-IBEA-IHV

0%

20%

40%

60%

80%

100% 97%

71%
64%

55%

38%

2%
10%

21% 21%

32%

0%

16%
10%

18% 17%

1% 3% 5% 6%
13%

Large Medium Small Equal

DMI-NSGA-II

DMI-IBEA

DMI-MOEA/D

DMI-NSGA-II-IH
V

DMI-IBEA-IHV

0%

20%

40%

60%

80%

100% 97%

72%

61% 59%

39%

1%

11%

23% 20%

33%

1%

15% 12%
17% 16%

1% 2%
6% 4%

14%

Large Medium Small Equal

DMI-NSGA-II

DMI-IBEA

DMI-MOEA/D

DMI-NSGA-II-IH
V

DMI-IBEA-IHV

0%

20%

40%

60%

80%

100% 95%

67%

48% 47%

35%

5%

21%

31%

42%
37%

0%

12%

21%

11%
17%

0% 0% 0% 0%

11%

Large Medium Small Equal

DMI-NSGA-II

DMI-IBEA

DMI-MOEA/D

DMI-NSGA-II-IH
V

DMI-IBEA-IHV

0%

20%

40%

60%

80%

100% 94%

64%
58%

46%

33%

6%

24%
32%

42%

58%

0%

12% 10% 12%
8%

0% 0% 0% 0% 1%

Large Medium Small EqualIGD+ (RBFN)HV (RBFN) IGD+ (GPR)HV (GPR)

Figure 6: Percentage of the large, medium, small, and equal A12 effect size of HV and IGD+ when
comparing DMI-MOEA/D-IHV with other five peer algorithm instances by using GPR and RBNF, re-
spectively.
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Figure 7: Illustrative example of the drawback of using the crowding distance in DMI-NSGA-II.

its performance with respect to the other five peer algorithms by using the A12 effect size separately.
Since the calculation of A12 effect size is conducted in a pairwise manner, there are 168×5×2 = 1, 680
piecemeal A12 comparison results. We again pull all results together and calculate the percentage of
the equivalent, small, medium and large effect size, respectively, with respect each of the other five
peer algorithms (note that there is barely equivalent case in these comparisons). From the statistical
results shown in Fig. 6, it is interesting to note that DMI-MOEA/D-IHV has shown dominantly better
results comparing to DMI-NSGA-II and DMI-NSGA-II-IHV where the large effect sizes are all over 90%.
In contrast, the effect sizes with regard to DMI-IBEA, DMI-IBEA-IHV and DMI-MOEA/D are relatively
comparable.

Answers to RQ1: We have the following takeaways from our experiments. 1) DMI-MOEA/D-IHV is
the best algorithm instance of our proposed framework while DMI-NSGA-II-IHV and DMI-NSGA-II

are the medium and worst ones respectively. 2) Owing to the unique characteristics of HV for
measuring convergence and diversity simultaneously, the IHV has shown to be a better mechanism
for guiding the batch recommendation. 3) In contrast, the crowding distance used in NSGA-II is too
coarse-grained to pick up representative solutions from a large amount of candidates. 4) MOEA/D is
the best baseline surrogate optimizer in the evolutionary search step while NSGA-II is the worst
both for using the IHV and the native environmental selection in the batch recommendation. It is
interesting to note that all these observations are consistent when using both GPR and RBFN in
the surrogate modeling step.

5.2 Comparisons of using GPR and RBFN in the surrogate modeling step

Based on the results obtained in Section 5.1, we evaluate the A12 effect size of HV and IGD+ between
each of the best, medium and worst algorithm instances (i.e., DMI-MOEA/D-IHV, DMI-NSGA-II-IHV
and DMI-NSGA-II) with regard to GPR and RBFN, respectively. As in Section 5.1, we calculate the
percentage of different effect sizes obtained by a pair of dueling algorithms. From the results shown
in Fig. 8, it is clear to see that using GPR as the surrogate model is consistently better than that
of RBFN. In particular, more than 50% comparison results are classified as having a large effect size
for DMI-MOEA/D-IHV by using GPR as the surrogate model have a large effect size against that of
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using RBFN. It is interesting to note that the difference is narrowed on the worst algorithm instance
DMI-NSGA-II where nearly 50% comparison results are classified as having a small effect size. All in
all, these comparison results suggest that GPR is more capable to model the objective functions than
RBFN. Nevertheless, the computational cost for building a GPR model is much higher than that of
RBFN.

DMI-MOEA/D-IHV

DMI-NSGA-II-IH
V

DMI-NSGA-II

0%

20%

40%

60%

80%

100%

55%

43%

16%
23% 21% 23%

17%
24%

47%

5%

22%
14%

P
er

ce
n
ta

ge
of

A
1
2

e↵
ec

t
si

ze
(H

V
)

Large Medium Small Equal

DMI-MOEA/D-IHV

DMI-NSGA-II-IH
V

DMI-NSGA-II

0%

20%

40%

60%

80%

100%

50% 52%

9%
16% 15%

22%
17%

21%

46%

17%
12%

23%

P
er

ce
n
ta

ge
of

A
1
2

e↵
ec

t
si

ze
(I

G
D

+
)

Large Medium Small Equal

Figure 8: Percentage of the large, medium, small, and equal A12 effect size of HV and IGD+, respec-
tively, when comparing DMI-MOEA/D-IHV, DMI-NSGA-II-IHV, DMI-NSGA-II with GPR as the surrogate
model against RBFN.

Answers to RQ2: Using GPR in the surrogate modeling step is more capable than RBFN in our
proposed batched data-driven EMO framework. The only concern for GPR is its cubic worst case
time complexity in model building.

5.3 Comparisons with other seven peer algorithms

Based on the results discussed in Section 5.1, we pick up the overall best, medium and worst al-
gorithm instances of our proposed framework, i.e., DMI-MOEA/D-IHV(GPR), DMI-NSGA-II-IHV(GPR)
and DMI-NSGA-II(RBFN), and compare their performance against the seven state-of-the-art peer algo-
rithms introduced in Section 4.2. Similar to Section 5.1, we first pull all statistical comparison results
of HV and IGD+ values, based on the Wilcoxon signed-rank test, among each of our 12 algorithm
instances as introduced in Section 3.4 with regard to the other seven state-of-the-art peer algorithms
as introduced in Section 4.2 in Tables 1 to 8 of our supplementary materials. From these results, we
find that the HV and IGD+ values obtained by our algorithm instances are better than the other seven
peer algorithms in most comparisons, even for DMI-NSGA-II(RBFN), our least competitive algorithm
instance. To have a better visual interpretation of the superiority achieved by our algorithm instances,
let us look into the population distribution of the non-dominated solutions against the other seven
peer algorithms. Due to the page limit, we only show a couple of examples in Figs. 9 and 10 while the
complete results can be found in the supplementary materials. From these plots, it is clear to see that
our proposed algorithms not only converge well to the PF, but are also resilient to the PF shapes.
Especially for those with disconnected PF segments, our proposed algorithms can approximate all
segments with a reasonable diversity. In contrast, the other peer algorithms are either struggling
on converging to the PF or hardly approximate all disconnected PF segments. It is interesting to
note that all algorithms have shown comparable results on WFG41 to WFG48 problems with two
objectives. But the performance of the other seven peer algorithms degrade significantly on the three-
objective cases. Another interesting observation is that the increase of the number of variables do not
downgrade the performance of our proposed algorithm instances.

As in Section 5.1, we apply the Scott-Knott test to sort the performance of each algorithm in-
stance against the other seven peer algorithms on all test problem instances. To facilitate a better
interpretation of these massive comparison results, for each of our best, medium and worst algorithm
instance, we pull 168× 8× 3 = 4, 032 comparison results collected from the Scott-Knott test together
and show their distribution and variance as the violin plots in Fig. 11. From these results, we further
confirm that our proposed algorithm instances are always better than the other peer algorithms in
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Figure 9: Non-dominated solutions found by different algorithms with the median HV values on
ZDT31 (n = 30).
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Figure 10: Non-dominated solutions found by different algorithms with the median HV values on
DTLZ72 (n = 30).
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Figure 11: Violin plots of Scott-Knott test ranks achieved by our proposed algorithm instances com-
pared against the other seven state-of-the-art peer algorithms (the smaller rank is, the better perfor-
mance achieved).

the corresponding comparisons. Specifically, DMI-MOEA/D-IHV(GPR) is consistently ranked in the first
place in all comparisons.

Again, we evaluate theA12 effect size between each of DMI-MOEA/D-IHV(GPR), DMI-NSGA-II-IHV(GPR)
and DMI-NSGA-II(RBFN) with regard to the other seven state-of-the-art peer algorithms on each
test problem instance. As in Section 5.1, we calculate the percentage of different effect sizes ob-
tained by each algorithm instance against the other peer algorithms, respectively. As the bar charts
shown in Fig. 12, we further confirm the overwhelming advantage observed from the Scott-Knott
test where the percentage of the large effect size is always close to 100% in all comparisons ob-
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Figure 12: Percentage of the large, medium, and small A12 effect size, respectively, when comparing
each of our proposed algorithm instances compared against other seven state-of-the-art peer algo-
rithms.
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Figure 13: Percentage of the large, medium, and small A12 effect size, respectively, when comparing
each of our proposed six algorithm instances against its ablated variant without using the manifold

interpolation step.

tained from DMI-MOEA/D-IHV(GPR) and DMI-NSGA-II-IHV(GPR). In contrast, the superior perfor-
mance DMI-NSGA-II(RBFN) is not as dominating as the other two, especially when comparing with
the recently proposed KTA2.

Answers to RQ3: We have the following takeaways from this experiment. 1) All algorithm in-
stances of our proposed framework have shown consistently better performance over the state-of-
the-art surrogate-assisted EMO algorithms in the literature, even for DMI-NSGA-II(RBFN), our least
competitive algorithm instance. 2) The overwhelmingly better performance achieved by our pro-
posed framework can be attributed to the manifold interpolation step that helps interpolate
the approximated PS manifold thus significantly increases the population diversity for exploring
disconnected regions.

5.4 Ablation study with regard to the manifold interpolation

The empirical study in Section 5.3 has shown overwhelmingly better performance of our proposed
framework against the selected state-of-the-art surrogate-assisted EMO algorithms. Referring to Fig. 2,
we can see the manifold interpolation step is the unique component of our proposed framework.
To address RQ4, we plan to investigate the usefulness of this manifold interpolation step through
an ablation study. To this end, we compare the performance between the algorithm instances under
our proposed batched data-driven EMO framework against the corresponding ablated counterpart
without using the manifold interpolation step. Accordingly, it is denoted as the one without the
DMI prefix. Note that we only consider the best algorithm instance DMI-MOEA/D-IHV(GPR) in this
study without loss of generality.
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From the statistical comparison results of HV values, based on the Wilcoxon signed-rank test,
shown in Tables 9 and 10 in the supplementary materials along with the A12 effect size shown in Fig. 13,
we have witnessed a clear performance degradation when ablating the manifold interpolation step
without any exception. It is worth noting that their performance is worse than most of the selected
state-of-the-art algorithms considered in Section 5.3 by referencing Tables 1 to 8 in the supplementary
materials. As an example shown in Fig. 14, we can see that non-dominated solutions obtained by
MOEA/D-IHV cannot fully approximate all disconnected PF segments. Without using the manifold

interpolation step, MOEA/D-IHV is merely guided by the surrogate model which is highly likely to be
guided to some local regions. This can be explained as the evolutionary population is far away from
the PF at the early stage of the evolution. In contrast, the manifold interpolation step brings
more candidates with additional diversity in the survival competition. Let us consider an illustrative
example shown in Fig. 15. Without using the manifold interpolation, MOEA/D-IHV can only obtain the
solution, denoted as the green square, lying the same PF segment of previously evaluated solutions.
On the other hand, because of the interpolated solutions, DMI-MOEA/D-IHV is able to explore under
discovered PF segment as spotted by the red square. Moreover, since the interpolated solutions are
along the currently approximated PF rather than purely random solutions, they are prone to have a
promising convergence property.
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Figure 14: Comparative example of DMI-MOEA/D-IHV against its counterpart where the manifold
interpolation is ablated on ZDT31 (n = 30).

Answers to RQ4: The manifold interpolation step is essential in our proposed framework. It
not only brings sufficient diversity to expand the population, the interpolated solutions also have
a promising convergence property given that they are interpolated along the approximated PS
manifold. As a result, it enables our algorithms to have a faster convergence rate and a better
ability to approximate different disconnected PF segments.

5.5 Parameter sensitivity study

In our proposed batched data-driven EMO framework, there are two hyper-parameters including the
batch size ξ in the batch recommendation step and the number of interpolated solutions Ñ in the
manifold interpretation step. To address RQ5 and RQ6, we choose DMI-MOEA/D-IHV(GPR) as
the baseline and empirically investigate its performance under different ξ = {1, 5, 10, 20} and Ñ =
{50, 100, 200} settings. In particular, ξ = 1 represents the sequential recommendation counterpart.

From the statistical comparison results of HV values, based on the Wilcoxon signed-rank test,
shown in Tables 11 and 12 in the supplementary materials along with the A12 effect size shown
in Fig. 16, we can see that the performance of DMI-MOEA/D-IHV(GPR) with ξ = 10 is comparable with
that of ξ = 1 and ξ = 5 where most of the differences are classified as statistically equivalent. Given
a limited amount of FEs, a smaller ξ leads to more iterations as in our proposed framework thus it is
more time consuming. Fig. 17 gives the comparison of CPU wall clock time among different ξ settings.
From this figure, we can see that DMI-MOEA/D-IHV(GPR) is around 10× slower when ξ = 1 than those
of ξ = 5, 10, 20. In addition, as an example shown in Fig. 18, using a too small ξ may compromise
the chance for exploring under discovered PF segment(s) as the solution #7 (denoted as ×) lying in
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Figure 15: Illustrative example of the effectiveness of having manifold interpolation step.
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Figure 16: Percentage of the large, medium, small, and equal A12 effect size, respectively, when
comparing DMI-MOEA/D-IHV with our recommended settings (i.e., ξ = 10 and Ñ = 100) against others
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Figure 17: Collected comparisons of CPU wall clock time when using different ξ settings.

a new segment. On the other hand, although it is faster when picking up more solutions in the bath

recommendation step by setting a larger ξ, the surrogate model becomes less resilient to local optima
due to the reduced iterations for updating the surrogate model. As the comparison results of A12

effect size shown in Fig. 16, it is clear to see a large performance degradation when increasing ξ to 20.
As the comparison results shown in Tables 13 and 14 in the supplementary materials along with the

A12 effect size shown in Fig. 16, it is interesting to note that the performance of DMI-MOEA/D-IHV(GPR)
is significantly degraded when having too small interpolated solutions (i.e., Ñ = 50) whereas it does
not make statistically meaningful difference when we further increase Ñ . However, the computational
time is significantly increased in the batch recommendation step when having a large amount of
interpolated solutions.
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Ñ = 50
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Figure 19: Collected comparisons of CPU wall clock time when using different Ñ settings.

Answers to RQ5: We have the following takeaways from our experiments. 1) Comparing against the
batch recommendation, the sequential recommendation (i.e., ξ = 1) makes the chosen solution(s) to
be less representative with regard to the PF. This applies to a smaller ξ setting (e.g., ξ = 5). 2) In
addition, it becomes much more time consuming when using a small ξ. 3) On the other hand, a too
large ξ renders the surrogate model less resilient to local optima.

Answers to RQ6: DMI-MOEA/D-IHV(GPR) is not very sensitive to the number of interpolated solu-

tions Ñ generated in the manifold interpolation step. However, the computational time grow
significantly with the increase of Ñ .

5.6 Real-World Application in Hyper-parameter Optimization

Due to the page limit, the detailed discussion of this experiment can be found in Appendix C. Here
we only come up with the conclusion.

Answers to RQ7: DMI-MOEA/D-IHV(GPR) has shown overwhelmingly better performance compared
against the other seven state-of-the-art peer algorithms. In particular, we can appreciate that real-
world problems are hardly with regular PFs as discussed in [21].

6 Conclusions and Future Directions

This paper proposed a batched data-driven EMO framework for solving computationally expensive
MOPs. It has three distinctive features. First, this framework is so general that any existing EMO
algorithm can be applied in a plug-in manner as the surrogate optimizer in the evolutionary search
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step. Second, based on the KKT conditions, its manifold interpolation step interpolates along
the approximated PS manifold to generate more diversified candidate solutions with a convergence
guarantee. Last but not the least, it provides two types of approach in the batch recommendation

step to evaluate multiple promising solutions for expensive FEs in parallel. Extensive experiments on
168 benchmark test problem instances with various irregular PFs fully demonstrate the effectiveness
and overwhelming superiority against six state-of-the-art EMO algorithms. Note that our ablation
study validates that the manifold interpolation step is essential within our proposed framework.

Data-driven evolutionary optimization has been an emerging area given the pressing requirements
of sample-efficient real-world applications in various disciplines. In view of the strong performance
and simple architecture of our proposed batched data-driven EMO framework, we envisage several
aspects for future endeavors as follows.

• This paper only considers problems with two- and three- objectives given the already over-
whelming superiority against the state-of-the-art. One of the future directions is to extend it
for many-objective optimization problems. A typical challenge is the ineffectiveness of the sam-
pling strategy suggested in equation (10) for high-dimensional problems. On the other hand,
sampling too many candidate solutions during the manifold interpolation step incurs signif-
icantly mounting complexity in the batch recommendation step.

• In addition to the scalability in the objective space, the increase of the number of variables, as
known as large-scale multi-objective optimization, also brings in significant challenges in both
surrogate modeling and evolutionary optimization. One tentative way to combat the curse-
of-dimensionality is divide-and-conquer that decomposes the original large-scale problem into
smaller ones.

• Real-world problems are usually accompanied with various constraints, the existing of which
render the search space to be teared up into fragments. These lead to challenges in sampling
and surrogate modeling since infeasible solutions tend to be useless in model building.

• Last but not the least, many exciting real-world applications are featured with multiple con-
flicting objectives and computationally expensive FEs. It is impactful to apply data-driven
evolutionary optimization for those complex black-box problems.
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