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a b s t r a c t

Under certain mild condition, the Pareto-optimal set (PS) of a continuous multiobjective optimization
problem, with m objectives, is a piece-wise continuous (m�1)-dimensional manifold. This regularity
property is important, yet has been unfortunately ignored in many evolutionary multiobjective
optimization (EMO) studies. The first work that explicitly takes advantages of this regularity property
in EMO is the regularity model-based multiobjective estimation of distribution algorithm (RM-MEDA).
However, its performance largely depends on its model parameter, which is problem dependent.
Manifold learning, also known as nonlinear dimensionality reduction, is able to discover the geometric
property of a low-dimensional manifold embedded in the high-dimensional ambient space. This paper
presents a general framework that applies advanced manifold learning techniques in EMO. At each
generation, we first use a principal curve algorithm to obtain an approximation of the PS manifold. Then,
the Laplacian eigenmaps algorithm is employed to find the low-dimensional representation of this PS
approximation. Afterwards, we identify the neighborhood relationship in this low-dimensional repre-
sentation, which is also applicable for the original high-dimensional data. Based on the neighborhood
relationship, we can interpolate new candidate solutions that obey the geometric property of the PS
manifold. Empirical results validate the effectiveness of our proposal.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multiobjective optimization problems (MOPs), which naturally
arise in many disciplines such as engineering [20], economics [26]
and logistics [22], involve more than one objective to optimize
simultaneously. Different from single objective optimization, an
MOP, due to the conflicts of its objectives, does not have a unique
solution. Instead, one can expect to find a set of trade-off solutions
that compromise all these objectives. Evolutionary algorithm (EA),
a nature-inspired and population-based optimization technique,
has been widely accepted as a major approach for MOPs. Over the
last two decades, much effort has been devoted to developing
evolutionary multiobjective optimization (EMO) algorithms (e.g.,
[12–14,16,18]), many of which have been successfully applied to a
wide range of problem domains [6,5,17]. There are two major
operations in EMO algorithms: one is recombination, which
considers generating offspring solutions, the other is selection,
which determines the survival of elite solutions as the next
parents. It is surprising that most, if not all, of the research in
EMO focuses on the design and analysis of selection operators,
while not much work has been done on recombination operators.

However, both these two issues are equally important. As pointed
out in [10,15,25,30], many recombination operators of EMO algo-
rithms are directly developed from single objective optimization,
such as crossover and mutation, whereas the characteristics of
MOPs have not been well utilized.

Under certain mild smoothness conditions, a continuous MOP
has a so-called regularity property, induced from the Karush–
Kuhn–Tucker conditions, that its Pareto-optimal set (PS) is a piece-
wise continuous (m�1)-dimensional manifold (m is the number
of objectives) in the decision space [30]. That is to say, for a
continuous MOP with two objectives, its PS is a piece-wise
continuous one-dimensional curve and the PS of a continuous
tri-objective MOP is a piecewise continuous two-dimensional
surface, so on and so forth. As discussed in [10,30], although such
regularity property has been utilized in the context of mathema-
tical programming for approximating the Pareto-optimal front (PF)
or PS [19,24], it has not been fully exploited in the context of EMO.
The first work that explicitly exploits such regularity property is
the regularity model-based multiobjective estimation of distribu-
tion algorithm (RM-MEDA) [30]. Based on the piecewise contin-
uous assumption, it employs the (m�1)-dimensional local
principal component analysis (PCA) [11] to divide the population
into K (K is a user-defined parameter) disjoint clusters and identify
the principal component for each of them. By making use of the
solutions in each cluster, RM-MEDA builds a local model to
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approximate a segment of the PS in the decision space. However,
the major drawback of RM-MEDA just lies in its modeling
technique, i.e., local PCA, which uses several linear models to
approximate the nonlinear manifold. In this case, the number of
local models, i.e., K, should have significant impacts on the
algorithm performances [27]. But unfortunately, K is usually
problem dependent.

Manifold learning, also known as nonlinear dimensionality
reduction, tries to find a representation of the data, originally in
a high-dimensional ambient space, in a relatively low-dimensional
space, while preserving the structural information, especially the
neighborhood structure. In the context of machine learning,
manifold learning techniques have been widely accepted as a data
preprocessing or feature extraction step, after which pattern
recognition algorithms (e.g., clustering and classification) are
applied. Many algorithms have been proposed to tackle this
problem, such as Laplacian eigenmaps (LE) [1], principal curve
(PC) [21,9], semi-definite embedding [28] and self-organizing map
[29]. Since the dimensionality of the decision space is usually
much larger than the number of objectives, the regularity property
of a continuous MOP implies that the PS is a low-dimensional
manifold embedded in the ambient decision space. Therefore, it is
natural and reasonable to exploit advanced manifold learning
techniques in the context of multiobjective optimization. There
are some works along this direction, such as semi-definite embed-
ding has been used for reducing the redundant objectives in
many-objective optimization [23] and self-organizing map has
been employed as a useful tool for visualizing the high dimen-
sional PF [4] and generating offspring [3]. Nevertheless, the
advantages of manifold learning in EMO have not been fully
exploited. In this paper, we present a general framework that
applies advanced manifold learning techniques to EMO in a
systematic and rational manner. As a preliminary study along this
direction, this paper only discusses the bi-objective continuous
MOPs. At each generation, we first use the PC algorithm to project
solutions, in the n-dimensional decision space, to a discrete curve
that passes through their middle and provides an approximation
of the PS manifold. Afterwards, we use the LE algorithm to reduce
the dimensionality of these projected solutions to one, and find
out the neighborhood relationship in a one-dimensional space.
Correspondingly, such neighborhood relationship can be readily
applicable to solutions in the original n-dimensional decision
space, and it also reflects the geometric characteristic of the PS
manifold. Finally, based on the neighborhood relationship, for each
solution in the population, we will locate its neighboring solution
and interpolate a new point as an offspring.

In the remainder of this paper, we first provide the problem
formulation of MOP in Section 2. Then, we make some comments
on RM-MEDA in Section 3. Afterwards, we present the technical
details of our framework in Section 4. Some experiments are
conducted in Section 5 to validate the effectiveness of our
proposed algorithm, and finally Section 6 concludes this paper
and provides some future directions.

2. Problem formulation

This paper considers the following continuous MOP:

minimize FðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ;…; f mðxÞÞT
subject to xAΩ ð1Þ

where Ω¼∏n
i ¼ 1½ai; bi�DRn is the decision (variable) space, and a

solution x¼ ðx1;…; xnÞT AΩ is a vector of decision variables. F :
Ω-Rm constitutes m real-valued objective functions, and Rm is
called the objective space. The attainable objective set is defined as
the set Θ¼ fFðxÞjxAΩg. Due to the conflicting nature of MOP, only

partial ordering can be specified among solutions. In other words,
for two solutions x1, x2AΩ, it can so happen that Fðx1Þ and Fðx2Þ
are incomparable. Some definitions related to MOP are given as
follows in the context of minimization problems.1

Definition 1. A solution x1 is said to Pareto dominate a solution x2,
denoted as x1⪯x2, if and only if f iðx1Þr f iðx2Þ for every iAf1;…;mg
and f jðx1Þo f jðx2Þ for at least one index jAf1;…;mg.

Definition 2. A solution xnAΩ is said to be Pareto-optimal if there
is no other solution xAΩ such that x⪯xn.

Definition 3. The set of all Pareto-optimal solutions is called the
PS. Accordingly, the set of all Pareto-optimal objective vectors,
PF ¼ fFðxÞARmjxAPSg, is called the PF.

3. Comments on RM-MEDA

Algorithm 1. Algorithm framework of RM-MEDA.

Step 1. Initialization: Initialize the population Pt by randomly
sampling N solutions over Ω, evaluate their F-function
values and set t¼1.

Step 2. Stopping condition: If the stopping condition is met,
output Pt and stop.

Step 3. Modeling: Partition Pt into K disjoint subpopulations by
(m�1)-dimensional local PCA algorithm and build a
probability model for each subpopulation.

Step 4. Reproduction by sampling: Generate a population of
offspring solutions Qt by sampling from the probability
model built in Step 3, and add a Gaussian noise on each of
them. Evaluate the F-function values of solutions in Qt.

Step 5. Selection: Select N elite solutions from Pt⋃Qt to form
Ptþ1. Set t ¼ tþ1 and go back to Step 2.

First of all, we briefly review the underlying mechanism of RM-
MEDA, whose implementation is given in Algorithm 1. The
principle of RM-MEDA is to build a probability model by exploiting
the regularity information from the current population. New
offspring solutions are thus obtained by sampling from this model.
As show in Fig. 1, RM-MEDA assumes that solutions in the
population are independent observations of a random vector
ξAΩ whose centroid is the PS manifold. According to the
regularity property of continuous MOP, ξ can be described as
follows:

ξ¼ ζþϵ ð2Þ

where ζ is uniformly distributed over a piecewise continuous
(m�1)-dimensional manifold, and ϵ is an n-dimensional zero-
mean noise vector. In order to model the nonlinear PS manifold, by
using the local PCA, RM-MEDA partitions Pt into K subpopulations,
C1;…;CK , each of which is used to approximate a linear manifold
(a (m�1)-dimensional hyper-rectangle) Ψi, where iAf1;…;Kg. In
this case, ζ is uniformly randomly sampled from Ψi and ϵ is a
Gaussian noise Nð0;σiIÞ, where I is a n�n identity matrix and
iAf1;…;Kg. Therefore, the modeling task of RM-MEDA is trans-
formed to estimate Ψi and σi for each subpopulation. For simpli-
city, we only give the formulations of Ψi and σi as follows,

1 Due to the duality principle, maximization of a scalar objective function fi is
the same as minimization of � f i, the produced results in this paper can be
naturally generalized for maximization problem.
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interested readers can refer to [30] for details:

Ψ i ¼ xAΩjx¼ x iþ ∑
m�1

j ¼ 1
αjU

i
j; a

i
j�0:25ðbij�aijÞrαjrbijþ0:25ðbij�aijÞ

( )
ð3Þ

where iAf1;…;Kg, x i ¼ ð1=jCijÞ∑xACix, Uj
i is a unity eigenvector

associated with the jth largest eigenvalue of the covariance matrix
of solutions in Ci, aij ¼minxACi ðx�x iÞTUi

j and bij ¼maxxACi

ðx�x iÞTUi
j:

σi ¼ 1
n�mþ1

∑
n

j ¼ m
λij ð4Þ

where λji is the jth largest eigenvalue of the covariance matrix of
solutions in Ci.

According to the aforementioned modeling process of RM-
MEDA, one question naturally arises: how to determine the value
of K? It is set as a constant (i.e., K¼5) in the original paper of RM-
MEDA. However, different PS shapes might require different
number of linear models, and even worse, the search landscapes
are usually unknown a priori. Let us consider an example shown in
Fig. 2, whose function form is as follows:

xi ¼ sin ðx1Þþ cos ð2x1Þ ð5Þ
where 0rx1r2π, iAf2;…;ng. For simplicity, we only plot the
coordinates x1 and x2 in Fig. 2, where circles denote the solutions
that scatter around the PS.

Intuitively, as for the example shown in Fig. 2, four local models
(i.e., K¼4) can effectively approximate this nonlinear manifold.
Fig. 3(a) shows the clustering result of the (m�1)-dimensional
local PCA with K¼4. These four local models nicely depict the
geometric characteristics of this PS manifold. However, if the
number of local models is not enough, it would result in a poor
approximation of the PS manifold, e.g., the example shown in
Fig. 3(b). In this case, the performance of RM-MEDA will be
significantly degraded, and it can hardly converge to the true PS.
On the other hand, if we use too many local models to approx-
imate the PS manifold, e.g., the example shown in Fig. 3(c), it
would result in a waste of computational budgets for building
redundant models. Even worse, the convergence rate of RM-MEDA
will be deteriorated by sampling from those redundant models.

4. Proposed framework

In this section, we present a general framework, as shown in
Algorithm 2, that applies manifold learning techniques for approx-
imating the PS manifold and facilitating offspring generation.
Several remarks are given in the following paragraphs to elaborate
each step of Algorithm 2.

Algorithm 2. Offspring generation via manifold learning technique.

Step 1. Use the PC algorithm to project the data points

S¼ fx1; x2;…; xNg into a nonlinear manifold P ¼ f _x1;…; _xNg.
Step 2. Use the LE algorithm to obtain the low-dimensional

representations of data points in P, denoted asbP ¼ f €x1
;…; €xNg.

Step 3. Determine the neighborhood relationship of each data

point in bP .
Step 4. For each solution _x iAP, where iAf1;…;Ng, we find out

its neighboring solution according to the neighborhood
relationship obtained in Step 3 and interpolate a new

Ψ1

Ψ2

Ψ3

solution
PS

Fig. 1. Illustration of the basic idea of RM-MEDA. Solutions should be scattered
around the PS in the decision space. Three manifolds Ψ1, Ψ2 and Ψ3 are used to
jointly approximate the PS.

0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

x1

x2

data point
PS manifold

Fig. 2. An example of a nonlinear one-dimensional PS manifold.

cluster
linear model

cluster
linear model

cluster
linear model

Fig. 3. Comparison of the effects of different models in different granularity: (a) nice model, (b) not enough local models and (c) too many local models.
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offspring population Q ¼ f ~x1;…; ~xNg that scattered around
the approximated PS manifold.

Remark 1. PC can be regarded as a nonlinear generalization of
PCA. Comparing to the linear manifold constructed by PCA, the
goal of constructing a PC is to project the data points onto a
nonlinear manifold directly. Fig. 4 shows the projection result
obtained by a PC algorithm on the same data set used in Fig. 2.
Comparing to a linear line, the projection result obtained by PCA in
Fig. 3(b), the projection obtained by the PC algorithm obviously
captures the geometric characteristics of the data set. Here we
apply the PC algorithm proposed in [21], which redefines principal
curves and surfaces in terms of the gradient and Hessian of the
probability density estimate (e.g., kernel density estimation). Since
the algorithm procedure is rather complicated, we do not intend to
elaborate it here. Interested readers are recommended to refer to
[21] for more details.

Remark 2. The projection obtained in Step 1 is an approximation
of the PS manifold. In order to interpolate new solutions that obey
the geometric characteristics of the manifold, we should have a
good knowledge about the neighborhood relationship of solutions
along the manifold. It is worth noting that the concept of
neighborhood along the manifold is different from that in the
Euclidean space. As shown in Fig. 5, B is the nearest neighboring
point of A in the Euclidean space (as ‖AB‖2o‖AC‖2, where ‖�‖2
indicates the ℓ2-norm), whereas C is the nearest neighboring point

of A along this PS manifold (as ‖cAB‖arco‖cAC‖arc , where ‖�‖arc
means the arc length). However, it is far from trivial to search for
the neighboring points in the high-dimensional decision space. In
order to obtain the neighborhood relationship that reflects the
geometric characteristics of the approximated PS manifold, Step 2
uses a classic manifold learning technique, i.e., LE algorithm, to
preprocess the data points in P. In particular, LE algorithm finds a
set of points bP ¼ f €x1

;…; €xNg in Rm�1 that can “represent” points of P
in Ω. The basic idea of LE algorithm is to construct a weighted graph
with N nodes, each of which is a point in P. A set of edges is generated
to connect neighboring points. By computing the eigenvectors of the
graph Laplacian, we can obtain the embedded mapping. The pseudo-
code of LE algorithm is shown in Algorithm 3. Interested reader can
refer to [1] for more details.

Algorithm 3. Procedure of LE.

Step 1. [Constructing the adjacency graph] Put an edge
between nodes i and j if xi and xj are close, i.e., ‖xi�xj‖2oϵ.

Step 2. [Choosing the weights] If nodes i and j are connected,

put Wij ¼ e�‖xi �xj‖2 , otherwise put Wij ¼ 0.
Step 3. [Eigenmaps] Compute eigenvalues and eigenvectors for

the generalized eigenvector problem:

Lf ¼ λDf (6)

whereD is diagonal weight matrix, its entries are column (or
row, since W is symmetric) sums of w, Dii ¼∑jWji. L¼D�W

is the Laplacian matrix. Let f0;…; fn�1 be the solutions of
equation (6), ordered according to their eigenvalues

Lf0 ¼ λ0Df0

Lf1 ¼ λ1Df1

⋯

Lfn�1 ¼ λn�1Dfn�1

0¼ λ0rλ1r⋯λn�1

Leaveout the eigenvector f0 corresponding to eigenvalue 0 and
use the next m�1 eigenvalues for embedding in (m�1)-

dimensional Euclidean space, i.e., _x i ) €x i ¼ ðf 1i ;…; f m�1
i ÞT .

Remark 3. Since we only consider the bi-objective MOPs here,
according to the regularity property of continuous MOPs, the
dimensionality of solutions in bP is one after the preprocess of
the LE algorithm. Therefore, the neighborhood relationship of
solutions in bP can be obtained by a simple sorting procedure.
Due to the locality preserving characteristic of the LE algorithm
[1], we assume that the neighborhood relationship obtained in bP
can be directly applied to P, while reflecting the geometric
characteristics of the manifold. To validate this assumption, we
apply the LE algorithm to the data points as shown on the left-
hand side of Fig. 6, and obtain the low-dimensional representation
as shown on the right-hand side of Fig. 6. The green and red circles
highlight two neighboring points in the low-dimensional repre-
sentation. Correspondingly, we find that they are also the neigh-
boring solutions in the original data set along the manifold.

Remark 4. Based on the neighborhood relationship obtained in
Step 3, the task of Step 4 is to interpolate new solutions that
conform to the geometric characteristics of the approximated PS
manifold. For simplicity, we try to interpolate new solutions
between two neighboring solutions. Specifically, for a solution xi,
iAf1;…;Ng, let its neighboring solution be xr , a new solution is

0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

x1

x2

data piont
PC point

Fig. 4. Illustration of the projection result of PC algorithm on the same data set
used in Fig. 2.

PS manifold

A
B

C

Fig. 5. Illustration of different neighboring solution concepts.
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generated as

ui
j ¼

xijþF � ðxrj �xijÞ if randoCR or j¼ jrand

xij otherwise

8<: ð7Þ

where jAf1;…;ng, randA ½0;1�, FA ½�2;3� and jrand is a random
integer uniformly chosen from 1 to n. Then, the polynomial
mutation [7] is applied on each ui to obtain ~x i:

~xij ¼
ui
jþσj � ðbj�ajÞ if randopm

ui
j otherwise

8<: ð8Þ

with

σj ¼
ð2� randÞ1=ðηþ1Þ �1 if rando0:5
1�ð2�2� randÞ1=ðηþ1Þ otherwise

(
ð9Þ

where the distribution index η and the mutation rate pm are two
control parameters. aj and bj are the lower and upper bounds of
the jth decision variable. For simplicity, the violated decision
variable is set to its nearer boundary value. Fig. 7 presents an
illustration on generating new solutions.

5. Empirical studies

In principle, the proposed framework can be incorporated into
any EMO algorithms, by replacing their recombination operators.
As a preliminary study, we replace Step 3 and Step 4 of Algorithm
1 with our proposed modeling technique in Algorithm 2. More-
over, we use the selection operator proposed in [18] in Step 5 of
Algorithm 1. This section presents the performance comparisons

of the resulted algorithm, termed as RM-MEDA/ML with RM-
MEDA.

5.1. Test instances

Ten unconstrained bi-objective MOP test instances are used in
our empirical studies, including F1, F2, F3, F5, F6 from [30] and
UF1, UF2, UF3, UF4, UF7 from CEC2009 MOEA competition [31]. All
these test instances are with variable linkages, and UF-series test
instances are with complicated PSs in the decision space. The
number of decision variables is constantly set to 10 for all test
instances.

5.2. Performance metrics

No unary performance metric can give a comprehensive
assessment on the performance of an EMO algorithm [34]. In our
empirical studies, we employ the following two widely used
performance metrics.

1. Inverted Generational Distance (IGD) metric [2]: Let Pn be a set of
points uniformly sampled along the PF, and S be the set of
solutions obtained by an EMO algorithm. The IGD value of S is
calculated as

IGDðS; PnÞ ¼∑xAPndistðx; SÞ
jPnj ð10Þ

where distðx; SÞ is the Euclidean distance between the solution
x and its nearest point in S, and jPnj is the cardinality of Pn. The
PF of the underlying MOP is assumed to be known a priori
when using the IGD metric. In our empirical studies, 1000
uniformly distributed points are sampled along the PF for IGD
calculation.

2. Hypervolume (HV) metric [33]: Let zr ¼ ðzr1;…; zrmÞT be a refer-
ence point in the objective space that is dominated by all
Pareto-optimal objective vectors. HV metric measures the size
of the objective space dominated by the solutions in S and
bounded by zr:

HVðSÞ ¼Vol ⋃
xA S

½f 1ðxÞ; zr1� �…½f mðxÞ; zrm�
� �

ð11Þ

where Volð�Þ is the Lebesgue measure. In our empirical studies,
the reference point is constantly set as zr ¼ ð2:0;2:0ÞT for all test
instances.

Both IGD and HV metrics can measure the convergence and
diversity of S. The lower is the IGD value (the larger is the HV

Fig. 6. Illustration of locality preserving characteristic of LE algorithm. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

x i

xr

x i

x i

u i

PS manifold

Fig. 7. Illustration on generating offspring solutions. In principle, a new offspring
solution ~x i can be any point that scattered around the PS manifold.
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value), the better is the quality of S for approximating the
whole PF. In the comparison tables of the following paragraphs,
the best mean metric values are highlighted in bold face. In
order to have statistically sound conclusions, Wilcoxon's rank
sum test at a 5% significance level is conducted to compare the
significance of difference between the metric values of two
algorithms.

5.3. General parameter settings

All these algorithms are implemented in MATLAB.2 The para-
meters of RM-MEDA are set the same as in [30], while the
parameter settings of our proposed RM-MEDA/ML are summar-
ized as follows:

1. Parameters of polynomial mutation: The mutation probability
pm ¼ 1=n and its distribution index ηm ¼ 20 [7].

2. Population size: N¼100 for all test instances.
3. Number of runs and stopping condition: Each algorithm is run 20

times independently on each test instance. The algorithm stops
after 10,000 function evaluations for F1, F2, F5 and F6. 50,000
for F3. 300,000 for UF1 to UF4 and UF7.

4. Parameters of manifold learners: The parameters of PC and LE
algorithms used in RM-MEDA/ML are set the same as recom-
mended in their original papers [21,1].

5.4. Empirical results

The performance comparisons of RM-MEDA and RM-MEDA/
ML, in terms of IGD and HV metrics, are presented in Table 1.
Figs. 9–18 plot the non-dominated fronts, including the one
obtained in the run with the best IGD value and all 20 fronts
together, by RM-MEDA and RM-MEDA/ML, respectively, on each
test instance. From these empirical results, it is clear that our
proposed RM-MEDA/ML performs better than the original RM-
MEDA. It achieves the better metric values in all comparisons.
Wilcoxon's rank sum tests indicate that all these better results
achieved by RM-MEDA/ML are with statistical significance.

To be specific, F1 to F3 are with linear variable linkages. The
performances of both algorithms are similar on F1 and F2, while
the performance of RM-MEDA/ML is more consistent than RM-
MEDA in all 20 runs. F3 has a non-uniform mapping from the
decision space to the objective space. In view of all 20 runs, the
performance of RM-MEDA is more consistent than RM-MEDA/ML
this time. But from Fig. 11, we find that the best non-dominated
front obtained by RM-MEDA/ML is closer to the PF. F5 and F6 are
with nonlinear variable linkages. RM-MEDA and RM-MEDA/ML
have shown similar performances on F5. But from Fig. 12, it is clear
that RM-MEDA/ML performs more consistently than RM-MEDA in
view of all 20 runs. As for F6, the superiority of RM-MEDA/ML is

F1 F2 F3 F5 F6
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Fig. 8. Average CPU-time costs comparisons of RM-MEDA/ML and RM-MEDA.

Table 1
Performance comparisons on IGD and HV metrics.

Test instances IGD HV

RM-MEDA RM-MEDA/ML RM-MEDA RM-MEDA/ML

F1 5.982E�3(1.38E�3)a 3.882E�3(3.20E�6) 3.6491(1.05E�2)a 3.6613(5.48E�5)
F2 6.803E�3(3.41E�3)a 3.819E�3(5.01E�9) 3.2882(5.06E�2)a 3.3282(6.04E�5)
F3 7.426E�3(4.25E�3)a 7.099E�2(1.54E�2) 3.0246(1.30E�2)a 3.0599(7.89E�2)
F5 1.452E�2(1.03E�2)a 5.158E�3(1.28E�4) 3.5996(4.73E�2)a 3.6581(2.42E�4)
F6 1.870E�1(1.18E�1)a 5.084E�3(2.92E�4) 2.5068(3.41E�1)a 3.3242(7.22E�4)
UF1 4.583E�2(1.34E�2)a 6.770E�3(6.65E�4) 3.5295(3.74E�2)a 3.6476(6.08E�3)
UF2 2.357E�2(8.71E�3)a 9.472E�3(1.28E�3) 3.5720(4.97E�2)a 3.6450(1.03E�2)
UF3 1.103E�1(5.22E�2)a 4.289E�3(5.18E�4) 3.2802(2.08E�1)a 3.6592(1.81E�3)
UF4 8.687E�2(3.04E�3)a 6.401E�2(8.65E�2) 3.0717(1.13E�2)a 3.4510(6.76E�1)
UF7 1.560E�2(2.24E�3)a 4.642E�3(2.54E�4) 3.4494(1.69E�2)a 3.4902(2.07E�3)

Wilcoxon's rank sum test at a 0.05 significance level is performed between RM-MEDA/ML and RM-MEDA. The best mean is highlighted in boldface.
The performance of RM-MEDA is significantly better than that of RM-MEDA/ML.

a The performance of RM-MEDA is significantly worse than that of RM-MEDA/ML.

2 The source code of RM-MEDA is downloaded from http://cswww.essex.ac.uk/
staff/zhang/. As for RM-MEDA/ML, the implementation of PC is downloaded from
http://indigo.ece.neu.edu/ erdogmus/pubs.html, and the implementation of LE is
downloaded from http://www.cse.ohio-state.edu/ mbelkin/algorithms/algorithms.
html.
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very clear, as RM-MEDA cannot approximate the entire PF in all 20
runs. Although these F-series test instances have variable linkages,
their PSs are usually linear manifolds in the decision space. In this
case, the modeling technique of RM-MEDA still can use several
linear models to approximate the entire PS. This explains the
similar performance of RM-MEDA and RM-MEDA/ML on F-series
test instances. But for UF-series test instances, they not only have
nonlinear variable linkages, but also have complicated PSs in the
decision space. As discussed in Section 3, it is very difficult to
determine how many local linear models can approximate those

complicated PSs. Therefore, RM-MEDA can easily build a wrong
model which greatly deviates from the PS. Obviously, new off-
spring solutions sampled from such wrong model are usually
inferior or invalid candidates, which may greatly mislead the
search process. In contrast, our proposed RM-MEDA/ML applies
the advanced manifold learning techniques to progressively learn
the nonlinear and complicated regularity property of the MOP in
question. This facilitates the model building for nonlinear PS
manifold. From the empirical results, it is obvious that our
proposed RM-MEDA/ML performs much better than RM-MEDA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

f1

f2

RM−MEDA
PF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

f1

f2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1
f2

RM−MEDA/ML
PF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f2

Fig. 10. Plots of solutions obtained by RM-MEDA and RM-MEDA/ML on F2.
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Fig. 11. Plots of solutions obtained by RM-MEDA and RM-MEDA/ML on F3.
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Fig. 9. Plots of solutions obtained by RM-MEDA and RM-MEDA/ML on F1.
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Fig. 12. Plots of solutions obtained by RM-MEDA and RM-MEDA/ML on F5.
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Fig. 14. Plots of solutions obtained by RM-MEDA and RM-MEDA/ML on UF1.
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Fig. 15. Plots of solutions obtained by RM-MEDA and RM-MEDA/ML on UF2.
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Fig. 16. Plots of solutions obtained by RM-MEDA and RM-MEDA/ML on UF3.
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Fig. 13. Plots of solutions obtained by RM-MEDA and RM-MEDA/ML on F6.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f1

f2

RM−MEDA
PF

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f1

f2

RM−MEDA/ML
PF

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f1

f2

Fig. 17. Plots of solutions obtained by RM-MEDA and RM-MEDA/ML on UF4.
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in terms of both convergence and diversity, while RM-MEDA can
approximate only some limited regions of the PF.

However, the encouraging performance achieved by RM-
MEDA/ML is no free lunch. Fig. 8 presents the comparisons of
average CPU-time costs of RM-MEDA/ML and RM-MEDA on all test
instances. It is obvious that the manifold learning techniques, used
in RM-MEDA/ML, cost more time on model building than the local
PCA used in RM-MEDA.

6. Conclusion and future works

This paper presents a general framework for using advanced
manifold learning techniques in EMO. In classic EMO algorithms,
recombination operators are usually developed from the single
objective optimization. In contrast, our proposed framework
provides an avenue to progressively learn the regularity property
of the MOP in question during the search process. The proposed
recombination operator is tailored for continuous MOPs, especially
those with complicated PSs in the decision space. From our
empirical studies, it is clear that our proposed RM-MEDA/ML
shows promising performance on all benchmark problems, espe-
cially the UF-series test instances, which are with complicated PSs.

As mentioned in the outset of this paper, this is a very
preliminary study on applying advanced machine learning tech-
niques (manifold learning in this paper) to the context of EMO. The
major purpose of this work is to draw significant attentions, from
the community, that the importance and usefulness of bridging
the gap between machine learning and evolutionary computation.
Many follow-up works can be done along this direction.

1. As a preliminary study, this work only addresses the bi-
objective continuous MOPs. As for problems with three or
more objectives, the PS manifold should be a surface or hyper-
surface, which makes the interpolation of new solutions
become more difficult. One may consider the Delaunay trian-
gulation [8] to obtain a triangulation of the points projected by
the PC algorithm. Then, new offspring solutions can be sampled
within each simplex.

2. As discussed in [32], the regularity property is not only
applicable for PS, but also for PF in the objective space. That
is to say, the PF is also a (m�1)-dimensional manifold
embedded in the m-dimensional objective space. In this case,
it is interesting to apply our proposed framework to model the
PF manifold and to guide the selection of solutions for the next
generation.

3. Other than the PC and LE algorithms used in this paper, there
are many other manifold learning techniques in the machine
learning field. It is interesting and important to compare and
investigate merits and drawbacks of different manifold learn-
ing techniques for different MOPs with various PS manifolds.

4. In this paper, we only consider the continuous MOPs, in which
the PSs are also continuous manifolds. It is also interesting and
important to extend our idea for problems whose PS manifolds
are several disconnected segments.
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