
2012 IEEE International Conference on Systems, Man, and Cybernetics
October 14-17, 2012, COEX, Seoul, Korea

Multi-Objective Differential Evolution with
Self-Navigation

Ke Li, Sam Kwong, Ran Wang and Jingjing Cao
Department of Computer Science

City University of Hong Kong
Hong Kong SAR

keILgenius@gmail.com, cssamk@cityu.edu.hk

Abstract-Traditional differential evolution (DE) mutation
operators explore the search space with no considering the
information about the search directions, which results in a purely
stochastic behavior. This paper presents a DE variant with self­
navigation ability for multi-objective optimization (MODElSN).
It maintains a pool of well designed DE mutation operators with
distinct search behaviors and applies them in an adaptive way
according to the feedback information from the optimization
process. Moreover, we deploy the neural network, which is trained
by the extreme learning machine, for mapping an artificially
generated solution in the objective space back into the decision
space. Empirical results demonstrate that MODEISN outperforms
several state-of-the-art algorithms on a set of benchmark prob­
lems with variable linkages.

Index Tenns-Differential evolution, neural network, multi­
objective evolutionary algorithm (MOEA)

1. INTRODUCTION

Differential Evolution (DE), proposed by Stom and
Price [1], is a popular and efficient population based, direct
heuristic for solving global optimization problems in the
continuous search space. The main benefits brought by DE
are its simple structure, ease of use, fast convergence speed
and robustness, which enable it to be widely applied to many
real-world applications. For the generation of new solutions
(trial vectors), each individual (target vector) is combined with
others by means of different forms of weighted sums (mutation
operators). A trial vector can replace the target vector only
if it has a better fitness value. The aim of these iterations
is basically to find a proper direction for the search process
towards the optimum, by following the quality distribution of
solutions in the current population.

One of the possible application domains of DE are the
Multi-objective Optimization Problems (MOPs), which exist
everywhere in real-world applications, such as engineering,
financial, and scientific computing. Many different DE variants
proposed to tackle MOPs can be found in the literature, such
as PDE [2], GDE3 [3], etc. We refer readers to [4] for a
recent comprehensive survey of DE, including its application
to MOPs. However, most of the DE variants for MOPs are only
simple grafts from global optimization cases, without the con­
sideration of the properties of MOPs themselves. Specifically,
it requires the algorithm to obtain an approximated solutions
set with not only well convergence to the Pareto Front (PF) ,
but also diversified and uniform distribution along this PF. By

978-1-4673-1714-6/12/$31.00 ©2012 IEEE

Imre J. Rudas
Institute of Intelligent Engineering Systems

6buda University
Budapest, Hungary
rudas@uni-obuda.hu

contrast, the primary goal of the global optimization is merely
locating the single global optimum. Besides, the traditional
DE mutation operators have not been equipped with any
orientation information. Instead, they are usually designed with
"single process", which either to explore the entire search
space as much as possible, or to exploit some selected region
exclusively. As a matter of fact, this kind of sightless search
would be rather hazardous in some circumstances, especially
in complicated optimization scenarios, such as problems with
variable linkages. For example, when solutions have already
approached the PF in the current time point, an explorative
operator might generate offspring that are far away from the
PF, which contributes to the typical degradation phenomenon.
On the other hand, the exploitive operator can hardly help
solutions jump out from the local optima.

Based on the above discussions, this paper presents a DE
variant for MOPs with self-navigation ability (MODE/SN).
It aims at equipping the orginal stochastic search behavior
of DE with some intelligence, which can provide effective
orientation information to solutions during the optimization
process. Specifically, MODE/SN maintains an operators pool,
which consists of four well designed DE mutation operators
with the following distinct search behaviors:

• Explore the search space as much as possible;
• Exploit some selected elite solutions;
• Provide some guidance towards the convergence direc­

tion, when solutions are far away from the PF;
• Guide solutions that reside in the crowded regions move

towards some relatively sparse areas.

In addition, an adaptive operator selection technique is em­
ployed as the coordinator to select an appropriate operator
for offspring generation in each time point, according to the
properties of the current fitness landscape. It is worth noting
that, in order to provide elite solutions for orientation explicitly,
we deploy a neural network, which is trained by the extreme
learning machine [5], for learning and capturing the function
that maps from the objective space to the decision space. In
summary, solutions in MODE/SN can evolve with appropriate
search behaviors during the entire optimization process.

The remainder of this paper is organized as follows.
section II provides the detailed algorithmic description of
the proposed method. After that, numerical experiments on

508

some benchmark problems are studied in section III. Finally,
section IV concludes this paper and highlight some future
directions.

II. MULTI-OBJECTIVE DE WITH SELF-NAVIGATION

In this section, we outline the framework of MODE/SN and
discuss each step of the algorithm in detail.

A. Preliminaries

In order to provide solutions effective orientation infor­
mation, it is necessary to have a general recognition on the
distribution of solutions timely. Motivated by this considera­
tion, we would like to employ a grid structure to determine
the location of a solution in this study. Moreover, the size
and location of the grid is adaptively updated during the
optimization progress. Here we only detail the grid setup in

, , min/.:CP) :+-;. ---------+:-: maxiP) , , , , , , , ,
Ibt:. It W -I - I ··1 -,:l/bl:

widthl;

the kth dimension

Fig. 1: The grid setup in the kth dimension

one dimensional case, without loss of generality. At first, the
minimum and maximum values on the kth dimension are found
and denoted as mink(P) and maxk(P), respectively. Based
on these two extreme values, the lower and upper boundaries
of the grid on that dimension are determined as:

lbk = mink(P) -(maxk(P) -mink(P))/(2 x div) (1)

ubk = maxk(P) + (maxk(P) - mink(P))/(2 x div) (2)

where div is a predefined parameter (div = 6 in Fig. 1) that
determines the number of divisions on each dimension. In this
case, the original m-dimensional objective space is thus divided
into divm grid cells with equal size. The width of a grid cell
on the kth dimension (denoted as widthk) is calculated as:

(3)

As for a solution Xi, the coordinate of the grid cell that it
resides in on the kth dimension is determined as:

Ck(Xi) = l(objk(Xi) -lbk)/widthkJ (4)

where objk(Xi) is the objective value of solution Xi on the
kth dimension. Take the solution distribution in Fig. 1 as an
example, the coordinates of grid cells for all solutions on the
kth dimension are 0,1,2,3,4,4 and 5, respectively.

Definition 1 (Grid dominate relationship): Let solutions Xi
and Xj reside in different grid cells, say grid cell A and grid
cell B, respectively. A dominates B (denoted as A �G B) if
and only if both the following two conditions are met:

1) The coordinate of A is no worse than that of B on
all dimensions, i.e. Ck(Xi) :S Ck(Xj), where k E
{I, 2, ... ,m};

2) The coordinate of A is strictly better than that of B on at
least one dimensions, i.e. 3l E {I, 2, ... , m} : Cz (Xi) <
CZ(Xj).

509

B. DE Mutation Operators with Orientation Information

As introduced in section I, four different DE mutation
operators with distinct search behaviors are proposed in this
following paragraphs.

1) Operator 1 (Exploration Oriented): In this paper, the
classical "DE/rand/I" [1] is employed to fulfill the first task
given previously, i.e. explore the entire search space as much
as possible. This operator is featured by the slow convergence
speed but strong exploration ability. For the current target
vector Xi, it is formulated as:

u· . = Xl . + F X (X2 . - X3 .) 't,] ,] ,] ,] (5)

where j E {I, 2, ... ,n} and n is the number of decision
variables, and Xi, Xl, X2 and X3 are different from each other.
The scaling factor F > 0 controls the impact of the vector
differences on the mutant vector.

2) Operator 2 (Exploitation Oriented): This operator aims
at guiding Xi exploit some selected elite solution XeZite. There
are two important issues for designing this operator, one is the
determination of Xelite and the other is the generation of the
direction guiding Xi to move towards Xelite' As introduced in
section II-A, the search space is artificially divided into several
grid cells with equal size at each search step. It is obvious that
the grid cell with many solutions resided in is usually not
preferred, as it means a crowded distributed region. Thus, we
apply the roulette wheel selection technique to select a less
crowded grid cell at first. Then, within this selected grid cell,
another round of roulette wheel selection is used to select Xelite
(the black circle in Fig. 2(a)), based on the fitness values. On
the other hand, in order to generate a direction guides Xi to
move toward Xelite, we have to select another solution on the
same side of Xi with respect to XeZite' Take Fig. 2(a) as an
example, Xr is on the left side of XeZite, thus Xr is selected on
this same side in between Xi and Xelite at random. In general,
Operator 2 is formulated as follows:

Ui,j = Xi,j + F x (Xelite,j -Xr,j) (6)

where j E {I, 2, ... ,n} and n is the number of decision
variables.

3) Operator 3 (Convergence Guided): As the name sug­
gested, the behavior of this operator is to guide Xi to move
towards the direction of PF, so that the pressure for the
improvement of convergence can be constantly provided in
this case. The formula of Operator 3 is given as follows:

Ui,j = Xi,j + F x (Xdom,j -Xi,j) + F x (Xelite -Xi,j) (7)

where j E {I, 2, ... ,n} and n is the number of decision
variables.

In practise, however, it is never known prior the exact posi­
tion of PF before the optimization. Nevertheless, the directional
information, which points to the direction of convergence, can
be obtained by the dominated solution points to its dominator.
This direction is relatively easy to obtain if Xi itself is a
dominated solution in the population, otherwise, it is far from
trivial to know which direction can improve the convergence.

2 0
0

0

�; �
/

/,.,
/

/I �
/ "

/', /
II /
It

I /
/ /

I
I

I
I

)::
�� elite

/ I
I

I 00 I 0

o

/ " t
/ ..d .

/ /
0

/ ".. ".. 0

0
0

,
'/

'l/

Ii 0
0 --
/0

j:) I
0

h':> 0 , I
� � I .l,

�� :; :b t ?"
,r� �� I , 0

I ' , 0 ,
, / / / , 0 , / / /

/ I , 0
" 0 // 0 0

�/ I,.v �/ I, ,
Ii Ii -F--------�Ii

(a) Operator 2 (b) Operator 3 (dominated) (c) Operator 3 (non-dominated) (d) Operator 4

Fig. 2: Intuitive illustration on different DE mutation operators

To this end, we scan the entire population to find out whether
there are solutions dominating Xi at first. On the one hand, the
solution which is farthest to Xi and dominate it is chosen as
Xdom (the black circle in Fig. 2(b)), when Xi is a dominated
solution. Afterwards, the grid cell (denoted as B) which is
nearest to that Xi resided in (denoted as A) and with the least
crowd is chosen, and a solution Xelite is randomly selected
from B. Then the two vectorial differences in equation (7)
and their linear combination generates the directional vector
pointing to the convergence direction. At last, this vector is
further combined with Xi thus generate the trial vector Ui.
On the other hand, it is difficult to generate the directional
vector pointing to the convergence direction if Xi itself is a
non-dominated solution. In this case, first of all, we locate
the non-dominated grid cell which is nearest to the grid cell
(denoted as A) that Xi resided in and with the least crowd.
Then a solution Xelite is chosen from this selected grid cell in a
random manner. Afterwards, the solution Xdom that dominates
Xi is generated artificially in the objective space. Generally
speaking, infinite number of solutions can be generated to
dominate Xi. In this paper, the solution that resides in the center
of the grid cell (denoted as B) which dominates A is generated
(the black square in Fig. 2(c)). In particular, the coordinates
of B is determined as follows:

(8)

Then the coordinates of Xdom in the objective space can be
calculated as follows:

objk(Xdom) = lbk
+

Ck(Xdom) X widthk
+ Wi�thk (9)

Mterwards, Xdom is mapped back from the objective space to
the decision space, according to the global model built by a
trained neural network. This technique would be detailed in
section II-C.

4) Operator 4 (Diversity Guided): This operator tries to
guide Xi move towards the region that is relatively less
crowded. In this case, the most important thing is the detection
of gaps between Xi and its neighbors. The grid cell (denoted
as A and marked as the dashed red square in Fig. 2(d)) that
Xi resided in is located at first. Afterwards, the Euclidean
distances between A and the other non-empty grid cells in
the objective space are calculated based on the coordinates of

510

those grid cells. Then those non-empty grid cells are sorted in
ascending order based on these calculated Euclidean distances.
The nearest grid cells in the left, right, up and down sides,
with respect to A, are located separately, and the one that is
farthest to A is chosen as the neighbor grid cell (denoted as B
and marked as the dashed red circle in Fig. 2(d)). If all four
nearest grid cells are with equal distance to A, we choose the
least crowded one as B. Next, solutions Xr and Xn are selected
from A and B, respectively, in a random manner. Xr is just
Xi whenever only one solution contained in A. The vectorial
differences between Xn and Xi, Xr generate two vectors whose
linear combination gives the direction towards the relatively
less crowded vicinity of Xi. The formula of this operator is
give as follows:

Ui,j = Xi,j
+

F x (xn,j -Xi,j)
+

F x (xn,j -Xr,j) (10)

where j E {l, 2, . . . , n} and n is the number of decision
variables.

C. Mapping from Objective Space to Decision Space

As discussed in section II-B, the implementation of Op­
erator 3 might need to generate a non-dominated solution in
the objective space artificially. However, it is far from trivial
to know the decision variables correspond to the generated
solution explicitly. Inspired by [6], we deploy a neural network
to capture the function which maps a certain objective solution
back to its corresponding decision variables. This is achieved
by training a neural network with the objective function values
as inputs and their corresponding decision variables as outputs.
Neural network is a useful modeling technique to model and
capture the pattern of data, so that to produce some predictions
for the parameter values of unknown systems. The neural
network needs to be trained to achieve desirable prediction
accuracies. In our case, the training data is the whole set
of objective function values obtained within a single run of
a MOEA. Moreover, as the same in [6], the training of the
neural network takes place offline before the execution of our
algorithm. In this case, a so called global model can be well
established by this trained neural network, which has a "good
knowledge" about the global landscape of the objective and
decision space of a certain optimization problem. During the
execution of our algorithm, the trained neural network is then

used to provide a more or less accurate prediction, whenever
an artificially generated solution is required to be mapped
from the objective space back into the decision space. If a
invalid decision variable value is produced by this mapping, it
is reflected back to its nearest value in its domain of definition.

AlI.:-t-Ali. Dec,

Objl

Obj2

Dec,

Input Layer Hidden Layer Output Layer

Fig. 3: The grid setup in the kth dimension

As shown in Fig. 3, a single hidden layer feed-forward
network is deployed in this paper as the structure of our
neural network. The extreme learning machine is employed
as the learning algorithm for training this neural network, in
view of its reported good results [5]. The number of input
neurons is the number of objective functions, while the number
of output neurons is the number of decision variables. The
training samples for this neural network are data of objective
function values and their corresponding decision variables
obtained from all the executions of NSGA-II [7] within 500
generations.

D. Adaptive Operator Selection

As discussed earlier, the appropriate operator for a solu­
tion is determined by the fitness landscape that is currently
explored, which might be different from time to time during
the optimization process. The four DE mutation operators
proposed in section II-B have different behaviors on exploring
the search space, which, in tum, provide solutions with specific
orientation information. By adaptively selecting the appropriate
opeartor, according to the current fitness landscapes and the
population distribution, we can provide sufficient guidelines
to the solutions to move towards the desired regions, thus, can
enable the algorithm to perform constantly well in different
circumstances. In order to meet the aforementioned objectives,
we propose an Adaptive Operator Selection (AOS) paradigm to
implement an autonomous control of which operator should be
applied at each time point of the optimization process, based on
their recent performances. The AOS paradigm here generally
consists of two components: the credit assignment scheme
which defines how an operator should be rewarded based on
its recent performance; the operator selection mechanism that
decides which operator should be applied next.

1) Credit Assignment: Here we improve the credit assign­
ment module proposed in [8], and the impact of the application
of operator a is evaluated as follows:

Ipf - cf l TJa = fbest X ---::---cf
(11)

511

where fbest is the best fitness value in the current population;

pf and cf are the fitness values of the target vector and
its offspring, respectively. In case no improvement has been
achieved (i.e. pf - cf :::; 0), TJa is set to zero. It is worth
noting that evaluating the fitness value of a solution is pretty
difficult in solving MOPs, as some solutions might be incom­
parable from each other. Here we employ the efficient fitness
assignment scheme proposed in [9], in view of its reported
good performance.

All the impacts achieved by the application of operator
a during each generation 9 are stored in a specific memory
Ra. At the end of each generation g, a unique credit (or
reward) value is assigned to each operator. It is calculated as
the combination of the average of all impacts operator a has
achieved and its success rate:

IRal R (.)
() _ '"' � success

ra 9 - � IRal
+

total .=1
(12)

where success is the number of times that the offspring
generated by the application of operator a at generation 9 can
survived to the next generation; while total is the number of
times that operator a has already been applied. In our original
proposal in [8], only the average term is considered as the
credit value. However, due to the incomparable characteristic
of MOP itself, it is difficult to precisely define the advantage
achieved by the application of an operator merely based on
the fitness value. Thus, here we add another item, i.e. success
rate of an operator, to aggregate more information to the credit
assignment module.

2) Operator Selection: The operator selection mecha­
nism used here is the Probability Matching (PM) [10].
Formally, let the operators pool be denoted by S
{S1, ... ,SK} where K > 1. The probability vector P(g) =
{P1(g)"",PK(g)}(V't :Pmin :::;Pi(g):::; 1;L�1Pi(g) = 1)
represents the selection probability of each operator at gen­
eration g. At the end of generation g, the empirical quality
estimate qa(g) of operator a is updated as [11]:

qa(g + 1) = qa(g) + a x [ra(g) - qa(g)] (13)

where a E (0,1] is the adaptation rate; the selection probability
is updated as:

qa(g + 1)
Pa(g + 1) =Pmin + (1-KxPmin) X K . (14)

Li=1 qi(g + 1)

where Pmin E (0,1) is the minimal selection probability value
of each operator. It ensures that all the operators have a nonzero
selection probability, which can avoid losing a currently bad
operator that might become useful in the future.

E. Replacement Mechanism

In the original DE algorithm, the offspring replaces its
parent in the next generation only if it has a better fitness
value. In the case of MOPs, a different replacement mechanism
is needed due to the already mentioned properties of them. To
this end, a two-step comparison method is proposed in this
work, it works as follows.

The first step of the replacement mechanism, which is based
on the Pareto dominance relation, uses the non-dominated
sorting method proposed in the NSGA-ll [7]. Briefly, at each
round, the non-dominated solutions of the hybrid population,
which are merged by solutions from the parent and offspring
populations, are chosen to survive to the next generation, and
then they are removed from the hybrid population afterwards.
This is done iteratively up to the completion of the population
for the next generation (i.e. required number of solutions have
been chosen after the non-dominated sorting procedure), or
until there are no less than this required number of solutions
with assigned rank values in the population.

In case there are still solutions need to be filtered for
the next generation, the next step considers the nTND values
proposed in [9] as the measurement. At each iteration, the
solution that has the lowest nTND value (i.e. the one that
locates in the least crowded region) is preserved, until the exact
number of solutions for the completion of the new population
is achieved.

III. EMPIRICAL STUDY

In this section, we compare the performance of our pro­
posed MODE/SN with three state-of-the-art MOEAs, namely,
GDE3 [3], NSGA-II [7] and MOEAID [12].

A. Experimental Settings

In our experiments, decision variables are encoded in real
numbers. The population size is constantly set to 100 for all
benchmark problems. The maximum number of generations
is set to 300 for two-objective problems and 500 for three­
objective problems. 50 independent runs are conducted to
collect the statistical results, and Wilcoxon's rank sum test
at a 0.05 significance level is adopted to compare the signifi­
cance of the difference between the solutions sets obtained by
two competing algorithms. The number of divisions on each
dimension is set as div = 10, and the hyper-parameters for the
AOS paradigm, i.e. adaptation rate a = 0.8 and Pmin = 0.05.
For the sake of a fair empirical comparison, the parameters of
the three state-of-the-art MOEAs are set as in their respective
original papers.

Various features of MOPs might cause difficulties to
MOEAs, such as non-convexity, multi-modality, discontinuity,
and non-uniformality. As Deb et al discussed in [13], most
of the widely used benchmark problems do not consider the
variable linkages, which can introduce significant difficulties to
MOEAs. In this paper, we investigate the performance of the
algorithms on the benchmark problems proposed in [14] (Fl
to FlO), which are with explicit linear and non-linear variable
linkages. Details about these ten benchmark problems can be
found in [14].

Two comprehensive performance indicators, Inverted Gen­

erational Distance (lGD) [15] and Hypervolume (HV) [16],
are employed to quantitatively evaluate the performance of
each algorithm at the end of each run. Both of them are
comprehensive indicators, which can evaluate the convergence
and diversity simultaneously. The reference points are set as

512

(2.0, 2.0) for two-objective problems and (2.0, 2.0, 2.0) for
three-objective problems, respectively, when calculating the
HY. Generally speaking, the lower the IGD value, the better
the performance is; oppositely, for HV, the higher the better.

B. Experimental Results

The comparative results, including the mean and variance,
for each of them are presented in Table I and Table II. In the
last column of each table, the t indicating that MODE/SN is
significantly better than all its competitors in the corresponding
benchmark problem, and :I: representing that the best com­
petitor significantly outperforms MODEISN. Moreover, the
best results for each indicator on each problem function are
highlighted in bold face with grey background.

From these comparative results, it clearly shows that
MODEISN is the best choice when compared to its competi­
tors: it achieves the best results in all performance metrics, and
performing significantly better in 18 out of 20 comparisons.
All these ten benchmark problems are modified from the
classical ZDT [17] and DTLZ [18] benchmark problems, on
which the state-of-the-art GDE3 and NSGA-ll reported good
performances [3] [7]. However, the introduction of variable
linkages presented significant difficulties to both of them for
optimization. MOEAID was the winning algorithm in CEC

2009 MOEA contest. It decomposes a MOP into a number of
single objective subproblems. Then a population based method
is used to solve these subproblems simultaneously. Though it
shows significant better performance to GDE3 and NSGA-II,
our proposed MODE/SN still outperform it in all performance
comparisons. All those three competing MOEAs are with
traditional stochastic evolutionary operators, in which the opti­
mization process does not consider the orientation information.
We conclude that the success of MODE/SN should benefit
from the new designed DE mutation operators which consider
the effective orientation information from the optimization
process. At the same time, the AOS paradigm adaptively select
the most appropriate operator to apply also well balance the
trade-off between the exploration and exploitation.

IV. CONCLUSION

In this paper, we propose a new DE variant for multi­
objective optimization, i.e. MODE/SN, which considers uti­
lizing the effective orientation information drawn from the
optimization process. It maintains an operators pool which
consists of four different DE mutation operators with distinct
search behaviors. We also deploy a neural network, which
is trained by the extreme learning machine, for mapping an
artificially generated solution from the objective space to its
corresponding decision variable values. An adaptive operator
selection paradigm is proposed to control the application of
different operators in an online manner. Numerical experi­
ments demonstrate that the proposed MODE/SN significantly
outperforms three state-of-the-art MOEAs, namely GDE3 [3],
NSGA-ll [7] and MOEAID [12], in all performance compar­
isons.

TABLE I: Performance Comparisons on IGD

I MOEAID NSGA-II GDE3 MODEISN S

F1 6.938E-3(4.92E-4) 1.093E-1 (3.89E-2) 1.441E-1 (4. 19E-2) 4.235E-3(5.12E-4) t
F2 1.533E-2(5.11E-3) 1.539E-1 (4.35E-2) 3.732E-1 (6.79E-2) 4.231E-3(4.67E-4) t
F3 4.887E-1(7.71E-2) 8.978E-1(1.02E-l) 7.912E-1(9.85E-2) 7.650E-2(6.19E-3) t
F4 1.429E-1(8.70E-2) 2.824E-1(1.37E-l) 9.461E-2(1.94E-1) 5.438E-2(6.58E-3) t
F5 6.979E-3(5.01E-4) 3.006E-1 (6.59E-2) 3.842E-1 (6.28E-2) 4.540E-3(4.18E-4) t
F6 1.054E-2(6.10E-3) 2.449E-1 (5.11E-2) 2.877E-1 (5.50E-2) 7.921E-3(8.02E-4) t
F7 5.521E-1(7.17E-2) 8.613E-1(1.77E-1) 5.433E-1(1.03E-1) 8.388E-2(8.98E-3) t
F8 3.843E-1 (1.00E-l) 3.052E-1(1.35E-1) 4.924E-1(1.90E-1) 7.637E-2(9.00E-3) t
F9 5.268E-1 (2.03E-l) 5.271E-1(2.22E-1) 5 .267E-1 (2.53E-1) 6.250E-3(1.08E-3) t
FlO 7.812E-1(4.98E-l) 8.092E-1(5.30E-1) 8.053E-1(5.19E-1) 9.358E-2(1.17E-l) t

TABLE II: Performance Comparisons on HV

MOEAID NSGA-II

F1 3.6553(3.56E-4) 3.3368(4.32E-4)
F2 3.3177(5.87E-4) 2.5511 (4.35E-3)
F3 1.5894(6.77E-3) 1.0931(7.0lE-3)
F4 5.5555(3.27E-3) 5.0497(4.1lE-3)
F5 3.6552(3.7lE-4) 3.0248(4.90E-4)
F6 3.3133(7.82E-4) 2.3293(5.15E-3)
F7 1.5140(2.66E-2) 1.0378(3.3lE-2)
F8 6.0001 (2.97E-2) 5.8060(2.l6E-2)
F9 2.3484(2.51 E-2) 2.3470(2.45E-2)
FlO 2.1 135(1.09E-l) 2.0731(2.llE-1)

In future, we would like to further analyze each module
of MODE/SN, including the four well designed DE muta­
tion operators and AOS paradigm, to better understand the
underlying mechanism of it. Moreover, the mapping from
the objective space to the decision space can introduce some
prediction errors, especially on some difficult problems. We
consider building some local models to better capture the
fitness landscapes online during the optimization process.

REFERENCES

[1) R. Stom and K. Price, "Differential Evolution - A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces," Journal of
Global Optimization, vol. 11, pp. 341-359, 1997.

[2) H. Abbass, R. Sarkar, and C. Newton, "A pareto differential evolution
approach to vector optimisation problems," in CEC '01: Proc. of 2001
IEEE Congress on Evolutionary Computation. IEEE press, 2001, pp.
971-978.

[3) S. Kukkonen and J. Lampinen, "GDE3: the third evolution step of
generalized differential evolution," in CEC'05: Proc. of 2005 IEEE
Congress on Evolutionary Computation, vol. I, Sep. 2005, pp. 443-450.

[4) S. Das and P. Suganthan, "Differential evolution: A survey of the state­
of-the-art," IEEE Transactions on Evolutionary Computation, vol. 15,
no. I, pp. 4-31, Feb. 2011.

[5) G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine:
Theory and applications," Neurocomputing, vol. 70, no. lC3, pp. 489-
501, 2006.

[6) S. F. Adra,l. Griffin, and P. J. Fleming, "An informed convergence accel­
erator for evolutionary multiobjective optimiser," in GECCO'07: Proc.
of the 9th annual conference on Genetic and evolutionary computation.
New York, NY, USA: ACM, 2007, pp. 734-740.

[7) K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ''A fast and elitist
multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evo­
lutionary Computation, vol. 6, no. 2, pp. 182-197, Apr. 2002.

[8) K. Li, A. Fialho, and S. Kwong, "Multi-objective differential evolution
with adaptive control of parameters and operators," in llON' 11: Pore. of
2011 Learning and Intelligent OptimizatioN, C. Coello, Ed. Springer
Berlin I Heidelberg, 2011, pp. 473-487.

513

GDE3 MODE/SN S

3.2553(4. 19E-4) 3.6604(2AIE-4) t
2. 1247(4.02E-3) 3.3269(4.89E-4) t
1.2936(6.82E-3) 3.0215(4.38E-4) t
5.5284(3.96E-3) 7.4045(2.55E-3) t
2.8847(1.99E-3) 3.6595(3.01E-4)
2.2545(5.72E-3) 3.3183(5.09E-4)
1.8003(3. 18E-2) 2.4832(3.81E-3) t
6.6013(2.34E-2) 7.0346(1.80E-2) t
2.3496(2.39E-2) 3.6446(5.52E-3) t
2.0824(2.32E-1) 2.2253(1.35E-l) t

[9) K. Li, S. Kwong, J. Cao, M. Li, J. Zheng, and R. Shen, "Achieving
balance between proximity and diversity in multi-objective evolutionary
algorithm," Information Sciences, vol. 182, no. 1, pp. 220-242, 2012.

[10) D. E. Goldberg, "Probability matching, the magnitude of reinforcement,
and classifier system bidding," Machine Learning, vol. 5, pp. 407-425,
1990.

[11) D. Thierens, ''An adaptive pursuit strategy for allocating operator prob­
abilities," in GECCO'05: Proc. of the 7th annual conference on Genetic
and evolutionary computation, H.-G. Beyer et al., Ed. ACM, 2005, pp.
1539-1546.

[12) Q. Zhang, W. Liu, and H. Li, ''The performance of a new version of
MOEAID on CEC09 unconstrained MOP test instances," in CEC '09:
Proc. 2009 IEEE Congress on Evolutionary Computation. IEEE press,
May 2009, pp. 203-208.

[13) K. Deb, A. Sinha, and S. Kukkonen, "Multi-objective test problems,
linkages,and evolutionary methodologies," in GECCO '06: Proc. of the
8th annual conference on Genetic and evolutionary computation. New
York, NY, USA: ACM, 2006, pp. 1141-1148.

[14) Q. Zhang, A. Zhou, and Y. Jin, "RM-MEDA: A regularity model-based
multiobjective estimation of distribution algorithm," IEEE Transactions
on Evolutionary Computation, vol. 12, no. 1, pp. 41-63, Feb. 2008.

[15) P. Bosman and D. Thierens, "The balance between proximity and
diversity in multiobjective evolutionary algorithms," IEEE Transactions
on Evolutionary Computation, vol. 7, pp. 174-188, 2003.

[16) E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: a com­
parative case study and the strength pareto approach," IEEE Transactions
on Evolutionary Computation, vol. 3, pp. 257-271, 1999.

[17) E. Zitzler, K. Deb, and L. Thiele, "Comparison of multiobjective
evolutionary algorithms: Empirical results," Evolutionary Computation,
vol. 8, pp. 173-195, June 2000.

[18) K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, "Scalable test problems
for evolutionary multiobjective optimization," in Evolutionary Multiob­
jective Optimization, ser. Advanced Information and Knowledge Pro­
cessing, L. Jain, X. Wu, A. Abraham, L. Jain, and R. Goldberg, Eds.
Springer Berlin Heidelberg, 2005, pp. 105-145.

