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Abstract-Traditional differential evolution (DE) mutation 
operators explore the search space with no considering the 
information about the search directions, which results in a purely 
stochastic behavior. This paper presents a DE variant with self­
navigation ability for multi-objective optimization (MODElSN). 
It maintains a pool of well designed DE mutation operators with 
distinct search behaviors and applies them in an adaptive way 
according to the feedback information from the optimization 
process. Moreover, we deploy the neural network, which is trained 
by the extreme learning machine, for mapping an artificially 
generated solution in the objective space back into the decision 
space. Empirical results demonstrate that MODEISN outperforms 
several state-of-the-art algorithms on a set of benchmark prob­
lems with variable linkages. 

Index Tenns-Differential evolution, neural network, multi­
objective evolutionary algorithm (MOEA) 

1. INTRODUCTION 

Differential Evolution (DE), proposed by Stom and 
Price [1], is a popular and efficient population based, direct 
heuristic for solving global optimization problems in the 
continuous search space. The main benefits brought by DE 
are its simple structure, ease of use, fast convergence speed 
and robustness, which enable it to be widely applied to many 
real-world applications. For the generation of new solutions 
(trial vectors), each individual (target vector) is combined with 
others by means of different forms of weighted sums (mutation 
operators). A trial vector can replace the target vector only 
if it has a better fitness value. The aim of these iterations 
is basically to find a proper direction for the search process 
towards the optimum, by following the quality distribution of 
solutions in the current population. 

One of the possible application domains of DE are the 
Multi-objective Optimization Problems (MOPs), which exist 
everywhere in real-world applications, such as engineering, 
financial, and scientific computing. Many different DE variants 
proposed to tackle MOPs can be found in the literature, such 
as PDE [2], GDE3 [3], etc. We refer readers to [4] for a 
recent comprehensive survey of DE, including its application 
to MOPs. However, most of the DE variants for MOPs are only 
simple grafts from global optimization cases, without the con­
sideration of the properties of MOPs themselves. Specifically, 
it requires the algorithm to obtain an approximated solutions 
set with not only well convergence to the Pareto Front (PF) , 
but also diversified and uniform distribution along this PF. By 
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contrast, the primary goal of the global optimization is merely 
locating the single global optimum. Besides, the traditional 
DE mutation operators have not been equipped with any 
orientation information. Instead, they are usually designed with 
"single process", which either to explore the entire search 
space as much as possible, or to exploit some selected region 
exclusively. As a matter of fact, this kind of sightless search 
would be rather hazardous in some circumstances, especially 
in complicated optimization scenarios, such as problems with 
variable linkages. For example, when solutions have already 
approached the PF in the current time point, an explorative 
operator might generate offspring that are far away from the 
PF, which contributes to the typical degradation phenomenon. 
On the other hand, the exploitive operator can hardly help 
solutions jump out from the local optima. 

Based on the above discussions, this paper presents a DE 
variant for MOPs with self-navigation ability (MODE/SN). 
It aims at equipping the orginal stochastic search behavior 
of DE with some intelligence, which can provide effective 
orientation information to solutions during the optimization 
process. Specifically, MODE/SN maintains an operators pool, 
which consists of four well designed DE mutation operators 
with the following distinct search behaviors: 

• Explore the search space as much as possible; 
• Exploit some selected elite solutions; 
• Provide some guidance towards the convergence direc­

tion, when solutions are far away from the PF; 
• Guide solutions that reside in the crowded regions move 

towards some relatively sparse areas. 

In addition, an adaptive operator selection technique is em­
ployed as the coordinator to select an appropriate operator 
for offspring generation in each time point, according to the 
properties of the current fitness landscape. It is worth noting 
that, in order to provide elite solutions for orientation explicitly, 
we deploy a neural network, which is trained by the extreme 
learning machine [5], for learning and capturing the function 
that maps from the objective space to the decision space. In 
summary, solutions in MODE/SN can evolve with appropriate 
search behaviors during the entire optimization process. 

The remainder of this paper is organized as follows. 
section II provides the detailed algorithmic description of 
the proposed method. After that, numerical experiments on 
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some benchmark problems are studied in section III. Finally, 
section IV concludes this paper and highlight some future 
directions. 

II. MULTI-OBJECTIVE DE WITH SELF-NAVIGATION 

In this section, we outline the framework of MODE/SN and 
discuss each step of the algorithm in detail. 

A. Preliminaries 

In order to provide solutions effective orientation infor­
mation, it is necessary to have a general recognition on the 
distribution of solutions timely. Motivated by this considera­
tion, we would like to employ a grid structure to determine 
the location of a solution in this study. Moreover, the size 
and location of the grid is adaptively updated during the 
optimization progress. Here we only detail the grid setup in 
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Fig. 1: The grid setup in the kth dimension 

one dimensional case, without loss of generality. At first, the 
minimum and maximum values on the kth dimension are found 
and denoted as mink(P) and maxk(P), respectively. Based 
on these two extreme values, the lower and upper boundaries 
of the grid on that dimension are determined as: 

lbk = mink(P) -(maxk(P) -mink(P))/(2 x div) (1) 

ubk = maxk(P) + (maxk(P) - mink(P))/(2 x div) (2) 

where div is a predefined parameter (div = 6 in Fig. 1) that 
determines the number of divisions on each dimension. In this 
case, the original m-dimensional objective space is thus divided 
into divm grid cells with equal size. The width of a grid cell 
on the kth dimension (denoted as widthk) is calculated as: 

(3) 

As for a solution Xi, the coordinate of the grid cell that it 
resides in on the kth dimension is determined as: 

Ck(Xi) = l(objk(Xi) -lbk)/widthkJ (4) 

where objk(Xi) is the objective value of solution Xi on the 
kth dimension. Take the solution distribution in Fig. 1 as an 
example, the coordinates of grid cells for all solutions on the 
kth dimension are 0,1,2,3,4,4 and 5, respectively. 

Definition 1 (Grid dominate relationship): Let solutions Xi 
and Xj reside in different grid cells, say grid cell A and grid 
cell B, respectively. A dominates B (denoted as A �G B) if 
and only if both the following two conditions are met: 

1) The coordinate of A is no worse than that of B on 
all dimensions, i.e. Ck(Xi) :S Ck(Xj), where k E 
{I, 2, ... ,m}; 

2) The coordinate of A is strictly better than that of B on at 
least one dimensions, i.e. 3l E {I, 2, ... , m} : Cz (Xi) < 
CZ(Xj). 
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B. DE Mutation Operators with Orientation Information 

As introduced in section I, four different DE mutation 
operators with distinct search behaviors are proposed in this 
following paragraphs. 

1) Operator 1 (Exploration Oriented): In this paper, the 
classical "DE/rand/I" [1] is employed to fulfill the first task 
given previously, i.e. explore the entire search space as much 
as possible. This operator is featured by the slow convergence 
speed but strong exploration ability. For the current target 
vector Xi, it is formulated as: 

u· . = Xl . + F X (X2 . - X3 .) 't,] ,] ,] ,] (5) 

where j E {I, 2, ... ,n} and n is the number of decision 
variables, and Xi, Xl, X2 and X3 are different from each other. 
The scaling factor F > 0 controls the impact of the vector 
differences on the mutant vector. 

2) Operator 2 (Exploitation Oriented): This operator aims 
at guiding Xi exploit some selected elite solution XeZite. There 
are two important issues for designing this operator, one is the 
determination of Xelite and the other is the generation of the 
direction guiding Xi to move towards Xelite' As introduced in 
section II-A, the search space is artificially divided into several 
grid cells with equal size at each search step. It is obvious that 
the grid cell with many solutions resided in is usually not 
preferred, as it means a crowded distributed region. Thus, we 
apply the roulette wheel selection technique to select a less 
crowded grid cell at first. Then, within this selected grid cell, 
another round of roulette wheel selection is used to select Xelite 
(the black circle in Fig. 2(a)), based on the fitness values. On 
the other hand, in order to generate a direction guides Xi to 
move toward Xelite, we have to select another solution on the 
same side of Xi with respect to XeZite' Take Fig. 2(a) as an 
example, Xr is on the left side of XeZite, thus Xr is selected on 
this same side in between Xi and Xelite at random. In general, 
Operator 2 is formulated as follows: 

Ui,j = Xi,j + F x (Xelite,j -Xr,j) (6) 

where j E {I, 2, ... ,n} and n is the number of decision 
variables. 

3) Operator 3 (Convergence Guided): As the name sug­
gested, the behavior of this operator is to guide Xi to move 
towards the direction of PF, so that the pressure for the 
improvement of convergence can be constantly provided in 
this case. The formula of Operator 3 is given as follows: 

Ui,j = Xi,j + F x (Xdom,j -Xi,j) + F x (Xelite -Xi,j) (7) 

where j E {I, 2, ... ,n} and n is the number of decision 
variables. 

In practise, however, it is never known prior the exact posi­
tion of PF before the optimization. Nevertheless, the directional 
information, which points to the direction of convergence, can 
be obtained by the dominated solution points to its dominator. 
This direction is relatively easy to obtain if Xi itself is a 
dominated solution in the population, otherwise, it is far from 
trivial to know which direction can improve the convergence. 
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Fig. 2: Intuitive illustration on different DE mutation operators 

To this end, we scan the entire population to find out whether 
there are solutions dominating Xi at first. On the one hand, the 
solution which is farthest to Xi and dominate it is chosen as 
Xdom (the black circle in Fig. 2(b)), when Xi is a dominated 
solution. Afterwards, the grid cell (denoted as B) which is 
nearest to that Xi resided in (denoted as A) and with the least 
crowd is chosen, and a solution Xelite is randomly selected 
from B. Then the two vectorial differences in equation (7) 
and their linear combination generates the directional vector 
pointing to the convergence direction. At last, this vector is 
further combined with Xi thus generate the trial vector Ui. 
On the other hand, it is difficult to generate the directional 
vector pointing to the convergence direction if Xi itself is a 
non-dominated solution. In this case, first of all, we locate 
the non-dominated grid cell which is nearest to the grid cell 
(denoted as A) that Xi resided in and with the least crowd. 
Then a solution Xelite is chosen from this selected grid cell in a 
random manner. Afterwards, the solution Xdom that dominates 
Xi is generated artificially in the objective space. Generally 
speaking, infinite number of solutions can be generated to 
dominate Xi. In this paper, the solution that resides in the center 
of the grid cell (denoted as B) which dominates A is generated 
(the black square in Fig. 2(c)). In particular, the coordinates 
of B is determined as follows: 

(8) 

Then the coordinates of Xdom in the objective space can be 
calculated as follows: 

objk(Xdom) = lbk 
+ 

Ck(Xdom) X widthk 
+ Wi�thk (9) 

Mterwards, Xdom is mapped back from the objective space to 
the decision space, according to the global model built by a 
trained neural network. This technique would be detailed in 
section II-C. 

4) Operator 4 (Diversity Guided): This operator tries to 
guide Xi move towards the region that is relatively less 
crowded. In this case, the most important thing is the detection 
of gaps between Xi and its neighbors. The grid cell (denoted 
as A and marked as the dashed red square in Fig. 2(d)) that 
Xi resided in is located at first. Afterwards, the Euclidean 
distances between A and the other non-empty grid cells in 
the objective space are calculated based on the coordinates of 
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those grid cells. Then those non-empty grid cells are sorted in 
ascending order based on these calculated Euclidean distances. 
The nearest grid cells in the left, right, up and down sides, 
with respect to A, are located separately, and the one that is 
farthest to A is chosen as the neighbor grid cell (denoted as B 
and marked as the dashed red circle in Fig. 2(d)). If all four 
nearest grid cells are with equal distance to A, we choose the 
least crowded one as B. Next, solutions Xr and Xn are selected 
from A and B, respectively, in a random manner. Xr is just 
Xi whenever only one solution contained in A. The vectorial 
differences between Xn and Xi, Xr generate two vectors whose 
linear combination gives the direction towards the relatively 
less crowded vicinity of Xi. The formula of this operator is 
give as follows: 

Ui,j = Xi,j 
+ 

F x (xn,j -Xi,j) 
+ 

F x (xn,j -Xr,j) (10) 

where j E {l, 2, . . .  , n} and n is the number of decision 
variables. 

C. Mapping from Objective Space to Decision Space 

As discussed in section II-B, the implementation of Op­
erator 3 might need to generate a non-dominated solution in 
the objective space artificially. However, it is far from trivial 
to know the decision variables correspond to the generated 
solution explicitly. Inspired by [6], we deploy a neural network 
to capture the function which maps a certain objective solution 
back to its corresponding decision variables. This is achieved 
by training a neural network with the objective function values 
as inputs and their corresponding decision variables as outputs. 
Neural network is a useful modeling technique to model and 
capture the pattern of data, so that to produce some predictions 
for the parameter values of unknown systems. The neural 
network needs to be trained to achieve desirable prediction 
accuracies. In our case, the training data is the whole set 
of objective function values obtained within a single run of 
a MOEA. Moreover, as the same in [6], the training of the 
neural network takes place offline before the execution of our 
algorithm. In this case, a so called global model can be well 
established by this trained neural network, which has a "good 
knowledge" about the global landscape of the objective and 
decision space of a certain optimization problem. During the 
execution of our algorithm, the trained neural network is then 



used to provide a more or less accurate prediction, whenever 
an artificially generated solution is required to be mapped 
from the objective space back into the decision space. If a 
invalid decision variable value is produced by this mapping, it 
is reflected back to its nearest value in its domain of definition. 

AlI.:-t-Ali. Dec, 

Objl 

Obj2 

Dec, 

Input Layer Hidden Layer Output Layer 

Fig. 3: The grid setup in the kth dimension 

As shown in Fig. 3, a single hidden layer feed-forward 
network is deployed in this paper as the structure of our 
neural network. The extreme learning machine is employed 
as the learning algorithm for training this neural network, in 
view of its reported good results [5]. The number of input 
neurons is the number of objective functions, while the number 
of output neurons is the number of decision variables. The 
training samples for this neural network are data of objective 
function values and their corresponding decision variables 
obtained from all the executions of NSGA-II [7] within 500 
generations. 

D. Adaptive Operator Selection 

As discussed earlier, the appropriate operator for a solu­
tion is determined by the fitness landscape that is currently 
explored, which might be different from time to time during 
the optimization process. The four DE mutation operators 
proposed in section II-B have different behaviors on exploring 
the search space, which, in tum, provide solutions with specific 
orientation information. By adaptively selecting the appropriate 
opeartor, according to the current fitness landscapes and the 
population distribution, we can provide sufficient guidelines 
to the solutions to move towards the desired regions, thus, can 
enable the algorithm to perform constantly well in different 
circumstances. In order to meet the aforementioned objectives, 
we propose an Adaptive Operator Selection (AOS) paradigm to 
implement an autonomous control of which operator should be 
applied at each time point of the optimization process, based on 
their recent performances. The AOS paradigm here generally 
consists of two components: the credit assignment scheme 
which defines how an operator should be rewarded based on 
its recent performance; the operator selection mechanism that 
decides which operator should be applied next. 

1) Credit Assignment: Here we improve the credit assign­
ment module proposed in [8], and the impact of the application 
of operator a is evaluated as follows: 

Ipf - cf l TJa = fbest X ---::---cf 
(11) 
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where fbest is the best fitness value in the current population; 

pf and cf are the fitness values of the target vector and 
its offspring, respectively. In case no improvement has been 
achieved (i.e. pf - cf :::; 0), TJa is set to zero. It is worth 
noting that evaluating the fitness value of a solution is pretty 
difficult in solving MOPs, as some solutions might be incom­
parable from each other. Here we employ the efficient fitness 
assignment scheme proposed in [9], in view of its reported 
good performance. 

All the impacts achieved by the application of operator 
a during each generation 9 are stored in a specific memory 
Ra. At the end of each generation g, a unique credit (or 
reward) value is assigned to each operator. It is calculated as 
the combination of the average of all impacts operator a has 
achieved and its success rate: 

IRal R (.) 
( ) _ '"' � success 

ra 9 - � IRal 
+ 

total .=1 
(12) 

where success is the number of times that the offspring 
generated by the application of operator a at generation 9 can 
survived to the next generation; while total is the number of 
times that operator a has already been applied. In our original 
proposal in [8], only the average term is considered as the 
credit value. However, due to the incomparable characteristic 
of MOP itself, it is difficult to precisely define the advantage 
achieved by the application of an operator merely based on 
the fitness value. Thus, here we add another item, i.e. success 
rate of an operator, to aggregate more information to the credit 
assignment module. 

2) Operator Selection: The operator selection mecha­
nism used here is the Probability Matching (PM) [10]. 
Formally, let the operators pool be denoted by S 
{S1, ... ,SK} where K > 1. The probability vector P(g) = 
{P1(g)"",PK(g)}(V't :Pmin :::;Pi(g):::; 1;L�1Pi(g) = 1) 
represents the selection probability of each operator at gen­
eration g. At the end of generation g, the empirical quality 
estimate qa(g) of operator a is updated as [11]: 

qa(g + 1) = qa(g) + a x [ra(g) - qa(g)] (13) 

where a E (0,1] is the adaptation rate; the selection probability 
is updated as: 

qa(g + 1) 
Pa(g + 1) =Pmin + (1-KxPmin) X K . (14) 

Li=1 qi(g + 1) 

where Pmin E (0,1) is the minimal selection probability value 
of each operator. It ensures that all the operators have a nonzero 
selection probability, which can avoid losing a currently bad 
operator that might become useful in the future. 

E. Replacement Mechanism 

In the original DE algorithm, the offspring replaces its 
parent in the next generation only if it has a better fitness 
value. In the case of MOPs, a different replacement mechanism 
is needed due to the already mentioned properties of them. To 
this end, a two-step comparison method is proposed in this 
work, it works as follows. 



The first step of the replacement mechanism, which is based 
on the Pareto dominance relation, uses the non-dominated 
sorting method proposed in the NSGA-ll [7]. Briefly, at each 
round, the non-dominated solutions of the hybrid population, 
which are merged by solutions from the parent and offspring 
populations, are chosen to survive to the next generation, and 
then they are removed from the hybrid population afterwards. 
This is done iteratively up to the completion of the population 
for the next generation (i.e. required number of solutions have 
been chosen after the non-dominated sorting procedure), or 
until there are no less than this required number of solutions 
with assigned rank values in the population. 

In case there are still solutions need to be filtered for 
the next generation, the next step considers the nTND values 
proposed in [9] as the measurement. At each iteration, the 
solution that has the lowest nTND value (i.e. the one that 
locates in the least crowded region) is preserved, until the exact 
number of solutions for the completion of the new population 
is achieved. 

III. EMPIRICAL STUDY 

In this section, we compare the performance of our pro­
posed MODE/SN with three state-of-the-art MOEAs, namely, 
GDE3 [3], NSGA-II [7] and MOEAID [12]. 

A. Experimental Settings 

In our experiments, decision variables are encoded in real 
numbers. The population size is constantly set to 100 for all 
benchmark problems. The maximum number of generations 
is set to 300 for two-objective problems and 500 for three­
objective problems. 50 independent runs are conducted to 
collect the statistical results, and Wilcoxon's rank sum test 
at a 0.05 significance level is adopted to compare the signifi­
cance of the difference between the solutions sets obtained by 
two competing algorithms. The number of divisions on each 
dimension is set as div = 10, and the hyper-parameters for the 
AOS paradigm, i.e. adaptation rate a = 0.8 and Pmin = 0.05. 
For the sake of a fair empirical comparison, the parameters of 
the three state-of-the-art MOEAs are set as in their respective 
original papers. 

Various features of MOPs might cause difficulties to 
MOEAs, such as non-convexity, multi-modality, discontinuity, 
and non-uniformality. As Deb et al discussed in [13], most 
of the widely used benchmark problems do not consider the 
variable linkages, which can introduce significant difficulties to 
MOEAs. In this paper, we investigate the performance of the 
algorithms on the benchmark problems proposed in [14] (Fl 
to FlO), which are with explicit linear and non-linear variable 
linkages. Details about these ten benchmark problems can be 
found in [14]. 

Two comprehensive performance indicators, Inverted Gen­

erational Distance (lGD) [15] and Hypervolume (HV ) [16], 
are employed to quantitatively evaluate the performance of 
each algorithm at the end of each run. Both of them are 
comprehensive indicators, which can evaluate the convergence 
and diversity simultaneously. The reference points are set as 
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(2.0, 2.0) for two-objective problems and (2.0, 2.0, 2.0) for 
three-objective problems, respectively, when calculating the 
HY. Generally speaking, the lower the IGD value, the better 
the performance is; oppositely, for HV, the higher the better. 

B. Experimental Results 

The comparative results, including the mean and variance, 
for each of them are presented in Table I and Table II. In the 
last column of each table, the t indicating that MODE/SN is 
significantly better than all its competitors in the corresponding 
benchmark problem, and :I: representing that the best com­
petitor significantly outperforms MODEISN. Moreover, the 
best results for each indicator on each problem function are 
highlighted in bold face with grey background. 

From these comparative results, it clearly shows that 
MODEISN is the best choice when compared to its competi­
tors: it achieves the best results in all performance metrics, and 
performing significantly better in 18 out of 20 comparisons. 
All these ten benchmark problems are modified from the 
classical ZDT [17] and DTLZ [18] benchmark problems, on 
which the state-of-the-art GDE3 and NSGA-ll reported good 
performances [3] [7]. However, the introduction of variable 
linkages presented significant difficulties to both of them for 
optimization. MOEAID was the winning algorithm in CEC 

2009 MOEA contest. It decomposes a MOP into a number of 
single objective subproblems. Then a population based method 
is used to solve these subproblems simultaneously. Though it 
shows significant better performance to GDE3 and NSGA-II, 
our proposed MODE/SN still outperform it in all performance 
comparisons. All those three competing MOEAs are with 
traditional stochastic evolutionary operators, in which the opti­
mization process does not consider the orientation information. 
We conclude that the success of MODE/SN should benefit 
from the new designed DE mutation operators which consider 
the effective orientation information from the optimization 
process. At the same time, the AOS paradigm adaptively select 
the most appropriate operator to apply also well balance the 
trade-off between the exploration and exploitation. 

IV. CONCLUSION 

In this paper, we propose a new DE variant for multi­
objective optimization, i.e. MODE/SN, which considers uti­
lizing the effective orientation information drawn from the 
optimization process. It maintains an operators pool which 
consists of four different DE mutation operators with distinct 
search behaviors. We also deploy a neural network, which 
is trained by the extreme learning machine, for mapping an 
artificially generated solution from the objective space to its 
corresponding decision variable values. An adaptive operator 
selection paradigm is proposed to control the application of 
different operators in an online manner. Numerical experi­
ments demonstrate that the proposed MODE/SN significantly 
outperforms three state-of-the-art MOEAs, namely GDE3 [3], 
NSGA-ll [7] and MOEAID [12], in all performance compar­
isons. 



TABLE I: Performance Comparisons on IGD 

I MOEAID NSGA-II GDE3 MODEISN S 

F1 6.938E-3(4.92E-4) 1.093E-1 (3.89E-2) 1.441E-1 (4. 19E-2) 4.235E-3(5.12E-4) t 
F2 1.533E-2(5.11E-3) 1.539E-1 (4.35E-2) 3.732E-1 (6.79E-2) 4.231E-3(4.67E-4) t 
F3 4.887E-1(7.71E-2) 8.978E-1(1.02E-l) 7.912E-1(9.85E-2) 7.650E-2(6.19E-3) t 
F4 1.429E-1(8.70E-2) 2.824E-1(1.37E-l) 9.461E-2(1.94E-1) 5.438E-2(6.58E-3) t 
F5 6.979E-3(5.01E-4) 3.006E-1 (6.59E-2) 3.842E-1 (6.28E-2) 4.540E-3(4.18E-4) t 
F6 1.054E-2(6.10E-3) 2.449E-1 (5.11E-2) 2.877E-1 (5.50E-2) 7.921E-3(8.02E-4) t 
F7 5.521E-1(7.17E-2) 8.613E-1(1.77E-1) 5.433E-1(1.03E-1) 8.388E-2(8.98E-3) t 
F8 3.843E-1 (1.00E-l) 3.052E-1(1.35E-1) 4.924E-1(1.90E-1) 7.637E-2(9.00E-3) t 
F9 5.268E-1 (2.03E-l) 5.271E-1(2.22E-1) 5 .267E-1 (2.53E-1) 6.250E-3(1.08E-3) t 
FlO 7.812E-1(4.98E-l) 8.092E-1(5.30E-1) 8.053E-1(5.19E-1) 9.358E-2(1.17E-l) t 

TABLE II: Performance Comparisons on HV 

MOEAID NSGA-II 

F1 3.6553(3.56E-4) 3.3368(4.32E-4) 
F2 3.3177(5.87E-4) 2.5511 (4.35E-3) 
F3 1.5894(6.77E-3) 1.0931(7.0lE-3) 
F4 5.5555(3.27E-3) 5.0497(4.1lE-3) 
F5 3.6552(3.7lE-4) 3.0248(4.90E-4) 
F6 3.3133(7.82E-4) 2.3293(5.15E-3) 
F7 1.5140(2.66E-2) 1.0378(3.3lE-2) 
F8 6.0001 (2.97E-2) 5.8060(2.l6E-2) 
F9 2.3484(2.51 E-2) 2.3470(2.45E-2) 
FlO 2.1 135(1.09E-l) 2.0731(2.llE-1) 

In future, we would like to further analyze each module 
of MODE/SN, including the four well designed DE muta­
tion operators and AOS paradigm, to better understand the 
underlying mechanism of it. Moreover, the mapping from 
the objective space to the decision space can introduce some 
prediction errors, especially on some difficult problems. We 
consider building some local models to better capture the 
fitness landscapes online during the optimization process. 
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