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Exploration and exploitation are two cornerstones of evolutionary multiobjective optimi-
zation. Most of the existing works pay more attention to the exploitation, which mainly
focuses on the fitness assignment and environmental selection. However, the exploration,
usually realized by traditional genetic search operators, such as crossover and mutation,
has not been fully addressed yet. In this paper, we propose a general learning paradigm
based on Jumping Genes (JG) to enhance the exploration ability of multiobjective evolution-
ary algorithms. This paradigm adapts the JG to the continuous search space, and its activa-
tion is completely adaptive during the evolutionary process. Moreover, in order to
efficiently utilize the useful information, only non-dominated solutions eliminated by
the environmental selection are chosen for the secondary exploitation. Empirical studies
demonstrate that the performance of a baseline algorithm can be significantly improved
by the proposed paradigm.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

A Multiobjective Optimization Problem (MOP) consists of several conflicting objectives. Generally speaking, an MOP can be
stated in the following form:
minimize FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; � � � ; fmðxÞÞT

subject to x 2 X
ð1Þ
where X ¼
Qn

i¼1½ai; bi� is the decision space, x = (x1, . . . , xn)T 2X is a potential solution to (1). F:X ? Rm constitutes m individ-
ual objective functions.

Let u, v 2X, u is said to dominate v if and only if fi(u) 6 fi(v) for each i 2 {1, . . . , m} and fj(u) 6 fj(v) for at least one index
j 2 {1, . . . , m}. A solution x⁄ is called the Pareto optimal solution of (1) if there is no solution x 2X that dominates x⁄. F(x⁄) is
then called a Pareto optimal vector. In other words, for a Pareto optimal vector, the improvement of any objective must result
in the deterioration of at least one other objective. The set of all Pareto optimal solutions is called the Pareto Set (PS). Accord-
ingly, the set of all Pareto optimal vectors, PF = {F(x) 2 Rmjx 2 PS}, is called the Pareto Front (PF) [20].

Evolutionary Algorithms (EAs) are stochastic optimization algorithms inspired by the natural evolution of species. In the
last two decades, great effort has been dedicated to the development of Multiobjective Evolutionary Algorithms (MOEAs).
These methods can generate a set of approximated Pareto optimal solutions in a single run. In addition, they can be used
for solving problems without good mathematical properties. Since the pioneering work of Schaffer [25], a large variety of
. All rights reserved.
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MOEAs have been proposed and applied to a wide range of practical optimization problems [4,5]. Srinivas et al. proposed a
Non-dominated Sorting Genetic Algorithm (NSGA) [28] that applies the non-dominated sorting technique to divide the popu-
lation into a hierarchy of sub-groups based on the Pareto domination. Then a niching strategy is applied to promote the pop-
ulation diversity. Later, Deb et al. proposed the state-of-the-art NSGA-II [8], which uses the fast non-dominated sorting and
crowding distance schemes. Zitzler et al. presented the Strength Pareto EA (SPEA) [42], which maintains an external archive to
store non-dominated solutions, and uses a clustering procedure to keep the size of this archive. SPEA2 [41], which is an im-
proved version of SPEA, incorporates a fine-grained fitness assignment scheme, a density estimation technique, and an en-
hanced archive truncation method. Recently, Zhang et al. proposed the MOEA based on Decomposition (MOEA/D) [36,18]
which decomposes an MOP into a number of single-objective optimization sub-problems. Then a population-based method
can be applied to solve these sub-problems simultaneously. Qu et al. proposed an MOEA based on Summation of Normalized
Objective Values and Diversified Selection (SNOV-DS) [23]. Zhao et al. proposed a Multiobjective Particle Swarm Optimization
(MOPSO) algorithm [38], which ensembles a set of parameter values and external archives, for solving MOPs. Combining
the Design For Multi-Objective Six Sigma (DFMOSS) and quasi-Newton method with an aging model, Ono et al. proposed a
memetic algorithm [22] for robust optimization.

Exploitation and exploration are two cornerstones of evolutionary approaches. Exploitation aims at discovering useful
information by using the current knowledge. It associates with the modules for selecting and archiving elite solutions in
an MOEA. Exploration, usually implemented by genetic search operators, such as crossover and mutation, tends to discover
new and unknown areas in the search space. Although exploitation and exploration are equally important for problem solv-
ing, most of the existing works focus on the exploitation. It is encouraging to see that several non-traditional exploration
operators have been proposed in recent years. Most of them take the characteristics of evolutionary dynamics into account
and show competitive performances for solving MOPs. Inspired by the Baldwin effect [34], Gong et al. [11] proposed an im-
proved clonal selection algorithm, in which antibodies are simultaneously evolved by four operators, i.e. clonal proliferation,
Baldwinian learning, hyper-mutation, and clonal selection. Wang et al. [33] proposed a MOPSO, which employs a new opti-
mal criterion based on the preferential order to identify the best compromise among solutions. Nebro et al. [21] proposed a
hybrid meta-heuristic algorithm, i.e. Archive-Based hYbrid Scatter Search (AbYSS), which combines the scatter search and evo-
lutionary operators. ke et al. [16] proposed a fast algorithm to calculate the hypervolume contribution of each solution and
applied it for population truncation in MOEA. ke et al. [15] suggested an effective adaptive operator selection mechanism and
parameter control method in mutliobjective differential evolution.

In this paper, we propose a learning paradigm based on jumping genes (denoted as JGBL), which aims at enhancing the
exploration ability of an MOEA. It is worth mentioning that there are five key differences between JGBL paradigm and our
previous works on Jumping Genes Genetic Algorithm (JGGA) [2,24].

1. In the original JGGA [2], solutions are encoded in binary strings, which are not suitable for problems in continuous search
space. Although RJGGA [24] claims to adapt Jumping Genes (JG) to the continuous search space, the rationale of JG is
merely simulated by a special treatment of the traditional crossover [6] and mutation [7], which in fact do not fully imple-
ment the JG features. To overcome these problems, the JG operators in the proposed JGBL paradigm are well developed in
the real-coded system.

2. The application of JG is well motivated in JGBL paradigm, rather than being an additive genetic operator of the traditional
crossover and mutation. Specifically, the rationale of JGBL paradigm is to provide some solutions, which are eliminated by
the environmental selection, another chance for the secondary exploitation. Therefore, more diversified building blocks
are expected to be generated, and then the prematurity can be greatly reduced.

3. In previous works [2,24], the JG operation is activated in a random manner, while our JGBL paradigm is adaptively acti-
vated during the evolutionary process.

4. In order to give sufficient exploitation on a specific solution, all JG operators are utilized simultaneously whenever the
JGBL paradigm is activated. This is different from our previous works [2,24], in which only one JG operator is randomly
chosen each time.

5. Previously, solutions are randomly selected from the entire population for the JG operation. Here, some deterministic criterion is
used to select appropriate solutions for this secondary exploitation, which can utilize useful information more efficiently.

The remainder of this paper is organized as follows. Backgrounds and related works are given in Section 2. The underlying
mechanism of JGBL paradigm is elaborated in Section 3. The performances of our proposed JGBL paradigm are empirically
studied in Section 4. Finally, conclusion of this work is given in Section 5.
2. Background and related works

Crossover and mutation, inspired by the biological mechanisms of DNA, are two conventional genetic search operators in
EAs [13]. JG, also known as transposon, can be used as an alternative for genetic recombination as well. The adaptation of JG,
which is a context-sensitive [30] operator to promote the intra and inter movements of genes, to the context of EA has been
developed for years. Simoes et al. [1] proposed a transposition mechanism, in which the transposon of a chromosome is
flanked by an identical or inverted sequence. The activation of JG operations is to identify the sequence end. By employing
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the artificial transposons, Spirov et al. [27] suggested a scheme that exploits the coevolution of host chromosomes and their
genetic parasites. Different from the previous two works [1,27] where JG is only partially emulated, Chan et al. [2] compre-
hensively studied the JG phenomenon and proposed four computational JG operators in the framework of NSGA-II. Nawaz
Ripon et al. [24] developed a Real-coded Jumping Genes Genetic Algorithm (RJGGA) to solve continuous MOPs. Instead of using
the JG operators directly, RJGGA just employs the polynomial mutation [7] and Simulated Binary Crossover (SBX) [6] to emu-
late the single and double chromosomes’ JG operators, respectively. Recently, Tang et al. [31] theoretically justified the out-
performance of binary-coded JG. Besides the theoretical studies, JG has also been widely applied to various real-world
optimization scenarios, such as passive circuits systems [39], planar UWB monopole antenna design [35], power voltage con-
trol systems [19] and wireless local area network optimization [3].

To our best knowledge, almost all existing studies on JG operations, in the context of EA, are implemented in the binary-
coded system. Although RJGGA claims to adapt JG to continuous search space, the JG operators are merely emulated by cross-
over and mutation as discussed before. Handling continuous problems with binary-coded system has several drawbacks: (1)
it is difficult to achieve arbitrary precision by using a binary string; (2) the Hamming cliff can largely impair the performance
of binary-coded GAs; (3) it is inappropriate to treat all Holland’s schemata equally in the continuous search space [12], etc. In
contrast, individuals coded in real numbers can achieve as high precision as the bit length of the machine. Hamming cliff can
be eliminated in the real-coded system. Moreover, the projection from genotype to phenotype becomes straightforward. Any
change on the decision variables will result in the equipotent variation in the objective function, thus it provides a faster way
for local tuning. However, since the boundaries of decision variables might be different from each other, the cut and paste and
copy and paste operations in the original JG paradigm cannot be directly adapted to the continuous space. In details, the
upper and lower bounds of the original position of a transposon might be different from those after the JG operations. This
phenomenon is also known as boundary violation, which might make the mutants generated by the JG operations become
invalid. Therefore, it is preferable to re-model the JG operators in the real-coded system, while at the same time, the bound-
ary violation can be avoided.

3. Proposed algorithm

In this section, the individual representation and the remedy technique for boundary violation are described at first, and
the underlying mechanism of JGBL paradigm is elaborated later.

3.1. Individual representation

In this paper, the individual is encoded as a chromosome consists of several genes. Instead of using ‘‘0–1’’ binary numbers
in the binary-coded system, each gene holds a real number of the corresponding decision variable. Fig. 1 gives a simple
example of individual x = (x1, . . . , x8)T that is composed of eight consecutive genes.

3.2. Remedy technique for boundary violation

As discussed in Section 2, JG operators, such as cut and paste, might generate invalid individual due to the boundary vio-
lation problem. As shown in Fig. 1, x2 becomes invalid if it is transferred to the gene position of x5, since x2 violates the
boundary constraint of x5.

Definition 1 (Variable Information). The variable information of x, denoted as Inf(x), is defined as the ratio that occupied in
its own range. Specifically, it is calculated as follows:
Inf ðxÞ ¼ x� lowerðxÞ
upperðxÞ � lowerðxÞ ð2Þ
where upper(x) and lower(x) represent the upper and lower bounds of x, respectively.
The calculation of Inf(x) is similar to the popular normalization method in the EA literature [4]. Rather than a concrete

value in the normalization case, Inf(x) is used as a record of the percentage maintained by x in its corresponding range.
The value after being transferred to a new position is restored as follows:
TranðxÞ ¼ lowerðyÞ þ Inf ðxÞ � ½upperðyÞ � lowerðyÞ� ð3Þ
where Tran(x) indicates the value of x after being transferred to the gene position of y.
Fig. 1. An example of solution representation.
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3.3. Computational form of JG

Generally speaking, there exists two types of JG operators [2], i.e. cut and paste and copy and paste. A transposon is made of
genes selected from each chromosome in a random manner. There is no restriction on the number of transposons, while the
size of each transposon is decided by a parameter called jumping percentage. The transposon contents are transferred in a
horizontal manner, which is a type of lateral movement that happens in one chromosome or between different ones. The
activation of JG operations is determined by a probabilistic factor called jumping rate, and the settle position of a transposon
is randomly chosen. Fig. 2a and b gives the intuitive illustrations on the cut and paste over one chromosome and two different
ones, respectively. Take Fig. 2a as an example, this chromosome consists of seven genes. Let jumping percentage = 0.4, thus
the transposon is composed of d7 � 0.4e = 3 genes. Suppose that genes b, d and f are chosen to form the transposon, and the
insert position is after gene a. Then the transposon bdf is cut from the original chromosome and inserted to the position after
a; meanwhile, the remaining genes c, e and g are merged together and shifted to the position after bdf. Different from the cut
and paste, the transposon is inserted in a replacement manner for copy and paste. Fig. 3a and b gives the intuitive illustrations
on the copy and paste act upon one chromosome and two different ones, respectively. Take Fig. 3a as an example, instead of
being cut from its original position, the transposon bdf is just a copy of their original genes. Assuming that the position after
gene a is chosen as the insert position, then three genes after a (i.e. b, c, d) are replaced by bdf while the other genes e, f and g
remain intact. The process of double chromosomes’ cut and past and copy and paste are analogous to that of the single
chromosome.
3.4. JGBL in MOEAs

Different from single-objective optimization problems, where the quality of a solution is evaluated by a definite objective
function, in MOPs, non-dominated solutions are usually incommensurable due to the conflicting nature of multiple criteria.
Non-dominated solutions play a crucial role in providing the desired direction towards the PF, and the evolution might stag-
nate if their quality is not good enough. This circumstance often happens when most solutions have been absorbed in the
area which is far away from the PF, or when they have been trapped by some local optima. Fig. 4 gives two examples to
illustrate the relationship between the performance of NSGA-II (measured by the Hypervolume (HV) indicator [42]) and
the number of non-dominated solutions (denoted as jNon_domj). The black fork marker indicates the stage that the number
(a) (b)
Fig. 3. Copy and paste transposition: (a) single and (b) double.

Fig. 2. Cut and paste transposition: (a) single and (b) double.
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of non-dominated solutions in the population is smaller than or equal to a predefined threshold N (here N is the population
size), while the green square marker represents the opposite situation. As shown in Fig. 4a, it is obvious that the trajectory’s
slope is steep at the first 20 generations, and it gradually turns to be moderate with the expansion of non-dominated solu-
tions. This scenario can be ascribed to the polynomial bias of WFG 1, which absorbs most of the solutions in the regions far
away from the PF. Moreover, WFG 1 also has flat bias property, which provides rare gradient information to the search algo-
rithm, thus it is hard for the conventional genetic search operators to generate good solutions. DTLZ 3 [9] is a difficult prob-
lem which has many local optima that obstruct an MOEA from converging to the PF. As shown in Fig. 4b, the HV values keep
being quite small during the first 130 generations. This can be ascribed to the fact that most of the solutions are mistakenly
attracted by the local optima.

Almost all existing EAs tend to assign high survival rates to the elite solutions, but this might be insufficient for an effec-
tive search in some scenarios. For example, the fast explosion of the current best schemata usually results in a fast conver-
gence of the algorithm, but it is also with a high risk of losing diversity and premature convergence when solving multi-
modal problems. Let us consider the examples discussed in Fig. 4 again, the stagnation of the evolution can be stimulated
if more diversified and high quality building blocks can be generated. Rather than transmitting genes in a vertical manner,
JG can be regarded as a complementation of traditional genetic search operators, which transmit genes in a horizontal way.
Then, diversified building blocks can be obtained by the collaboration of the traditional genetic search operators and JG, thus
the exploration ability of the baseline MOEAs is expected to be enhanced. In this paper, JG operations only take place when
the number of non-dominated solutions is larger than the population size. Following the general structure of an MOEA, the
basic framework which incorporates the JGBL paradigm is given in Algorithm 1, where P, Q, R, F and J denote the evolutionary
population, the offspring population, the hybrid population merged by P and Q, the set of current non-dominated solutions
and the mutant population generated by JG operations, respectively. The population size is denoted as Popsize. It is worth
noting that if there are no solutions generated by JG, the Popsize offspring are purely generated by traditional genetic search
operators (line 4 in Algorithm 1); otherwise, the offspring population would be a hybrid of solutions that are generated by JG
and traditional genetic search operators together. The activation of JGBL paradigm is determined by the number of
non-dominated solutions in R, while the frequency of JG operations is controlled by jumping rate.

Algorithm 1. Framework of the JGBL based MOEA
Fig. 5 gives more intuitive illustration on line 5–15 of Algorithm 1. At first, a combined population Rt = Pt
S

Qt is formed,
where Pt and Qt are parent and offspring populations respectively at the current generation t. Then, non-dominated solutions
in Rt are filtered out exclusively after the environmental selection (line 7 in Algorithm 1). The JGBL paradigm is activated
when the number of non-dominated solutions is larger than Popsize (i.e. jFtj > Popsize). Et (line 9 in Algorithm 1) represents
the non-dominated solutions that are eliminated by the environmental selection. Instead of eliminating these solutions di-
rectly, JGBL paradigm aims at exploiting useful information from them (line 10 in Algorithm 1). This is motivated by the fol-
lowing two advantages.

1. Since solutions in Et possess satisfactory convergence property, conducting JG operations on them might have larger
chance to generate better mutants, compared to those dominated ones (this issue will be discussed in Section 4.7).

2. In general, these solutions are eliminated by the environmental selection since they reside in more crowded areas. In this
case, the JGBL paradigm can be regarded as a local refiner which might be helpful for exploring some unknown regions.
Thus the overall spread of solutions might be enhanced at last, by the preferable mutants.



(a) Evolutionary trajectory of HV on WFG 1 (b) Evolutionary trajectory of HV on DTLZ 3

Fig. 4. Relationship between the performance of NSGA-II and jNon_domj.

Fig. 5. The work flow of JGBL paradigm embedded in the environmental selection procedure of an MOEA.
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After JG operations, the JG mutants in Jt are combined with the non-dominated solutions survived from the first round
environmental selection to form a new hybrid population R0 (line 11 in Algorithm 1). Afterwards, another round environmen-
tal selection is operated upon R0 to filter out the parent population Pt+1 for the next generation (line 12 in Algorithm 1).

Fig. 6 gives a possible population distribution (Popsize = 8 here), where star markers indicate the non-dominated solutions
eliminated by the first round environmental selection. JGBL paradigm aims at exploiting these solutions, and some satisfac-
tory mutants (indicated by square markers) might be generated accordingly. Afterwards, some previously survived non-
dominated solutions might be eliminated by the second round environmental selection, since they reside in a more crowded
area compared to the JG mutants. The latter two key differences of JGBL paradigm introduced in Section 1 are further ex-
plained as follows.

1. All those four different JG operators introduced in Section 3.3 are utilized simultaneously whenever the JGBL
paradigm is activated. In this case, a solution is able to generate six mutants each time. Therefore, more opportunities
can be provided to explore unknown regions and the population diversity has larger chance to be enhanced.

2. When the JG operator is applied onto two different solutions, one solution is selected from those survived from the
first round environmental selection, while the other is chosen from the non-dominated solutions eliminated by the
first round environmental selection. In this way, useful information is likely to be fully utilized and exploited.



Fig. 6. The possible effect of JGBL paradigm.
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4. Empirical studies

In this section, the JGBL paradigm is incorporated with two state-of-the-art MOEAs, i.e. NSGA-II and SPEA2, respectively,
for validating its advantages. Generally speaking, the empirical studies include the following five aspects:

1. Performance comparisons with two baseline algorithms.
2. Sensitive studies on the two hyper-parameters, i.e. jumping percentage and jumping rate.
3. CPU-time cost study.
4. Verification on the rationale of JGBL paradigm.
5. Performance comparisons with the state-of-the-art MOEA/D.

In the following paragraphs, the benchmark problems, performance metrics and parameter settings are given at first, then
the empirical studies are elaborated step by step.

4.1. Test instances

All test instances used in this paper have already been widely investigated in this literature. The bi-objective instances are
taken from WFG and ZDT test suites [14,40] and the tri-objective instances consist of DTLZ test suite [9]. All these test in-
stances are scalable to any number of problem dimensionality, while DTLZ and WFG are also scalable to arbitrary number of
objectives. In addition, WFG has some distinct difficulties such as bias, deceptive and parameter dependency. The problem
dimensionality (denoted as nreal) of each test instance is given in Table 1. Details about these test instances can be found in
the corresponding Refs. [9,14,40].

4.2. Performance metrics

As discussed in [43], no unary metric can give a comprehensive measure on the performance of an MOEA. Here, we con-
sider three widely used unary metrics and one binary indicator:
Table 1
The settings on problem dimensionality for different test instances.

Test instances nreal

ZDT 1 to ZDT 3 30
ZDT 4 and ZDT 6 10
DTLZ 1 7
DTLZ 2 to DTLZ 6 12
DTLZ 7 22
WFG 1 to WFG 9 6



Table 2
Reference points settings for different test instances.

Test instances Reference points

ZDT test suite (2.0,2.0)
DTLZ 1 (1.0,1.0,1.0)
DLTZ 2 to DTLZ 6 (2.0,2.0,2.0)
DTLZ 7 (2.0,2.0,7.0)
WFG test suite (3.0,5.0)
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1. Generation Distance (GD) [32]: Let P⁄ be a set of uniformly distributed Pareto optimal vectors and P be the obtained PF
approximation. The GD value of P is calculated as:
GDðP; P�Þ ¼
P

x2P�distðx; PÞ
jPj ð4Þ
where dist(x,P) is the minimum Euclidean distance between x and vectors in P, and jPj indicates the size of P. In general, GD is
able to evaluate the convergence of P if jP⁄j is large enough. Here, jP⁄j = 1000 for bi-objective instances and jP⁄j = 10,000 for
tri-objective ones. It is clear that a lower GD value indicates a better convergence.
2. Spacing (SP) [26]: SP measures the uniformity of the PF approximation. Mathematically, it is formulated as:
SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n� 1

Xn

i¼1
ð�d� diÞ2

r
ð5Þ
where n is the size of the PF approximation. di is the Euclidean distance between vector i and its nearest neighbor, and
�d ¼ 1

n

Pn
i¼1di. SP = 0 indicates that all approximated vectors are uniformly distributed along the PF.

3. Hypervolume indicator (HV) [42]: Let F⁄ = (f1(x⁄), . . . , fm(x⁄))T be a reference point in the objective space which is domi-
nated by all approximated vectors. The HV value of P is the volume of union regions that are dominated by P and bounded
by F⁄.
IHðPÞ ¼ volume
[
x2P

½f1ðxÞ; f1ðx�Þ� � � � � � ½fmðxÞ; fmðx�Þ�
 !

ð6Þ
The higher HV, the better P approximates the PF. The reference points used for evaluating the HV are given in Table 2.
4. Binary �-indicator (I�) [43]: A vector F(x) = (f1(x), . . . , fm(x))T is said to �-dominate another vector F(y) = (f1(y), . . . , fm(y))T,

written as F(x) �� F(y), if and only if "1 6 i 6m:fi(x) 6 � � fi(y) for a given � > 0. Formally, the I� of two approximation sets A
and B is defined as:
I�ðA;BÞ ¼ inf
�2Rþ
f8x 2 B;9y 2 A : FðxÞ �� FðyÞg ð7Þ
It can be calculated as:
I�ðA;BÞ ¼max
y2B

min
x2A

max
16i6m

fiðxÞ
fiðyÞ

ð8Þ
There are three cases as follows:
(a) <: I�(A,B) 6 1 and I�(A,B) > 1) A is better than B.
(b) ^: I�(A,B) > 1 and I�(A,B) 6 1) B is better than A.
(c) �: I�(A,B) > 1 and I�(A,B) > 1) A and B are incomparable.

In comparison, I� requires two MOEAs each time. For each MOEA, 50 simulation runs will produce 50 approximation sets.
Hence, there are 2500 pairs for comparison.

4.3. General experimental setting

All algorithms are implemented in ANSI C. Empirical studies are conducted on Intel Core 2 Duo CPU P8400@2.26 GHz,
2 GB RAM computer, with Microsoft Windows 7 operating system. The parameter settings are as follows.

	 Control parameters of SBX and polynomial mutation: Following Refs. [8,41], crossover rate pc = 0.9, crossover index
gc = 20, mutation rate pm ¼ 1

nreal, and mutation index gm = 20.
	 Hyper-parameters of JGBL paradigm: jumping rate = 0.6 and jumping percentage = 0.5.
	 Population size (denoted Popsize): Popsize = 100 for all test instances.



Fig. 7. The general structure of the statistical analysis used in this work.
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	 Number of independent runs and maximum number of generations: 50 independent runs are conducted for each algo-
rithm on each test instance. The maximum number of generations is 250 for bi-objective instances, and 300 for tri-objec-
tive ones, respectively.

The best results are highlighted with boldface and dark background. As discussed in [10,21], all candidate MOEAs are sto-
chastic algorithms, so that the following statistical analysis is necessary for providing confidential comparisons. The general
structure of statistical analysis is given in Fig. 7. Firstly, Kolmogorov–Smirnov test is performed to check whether the results
follow the Gaussian distribution or not. If the results are not Gaussian distributed, the non-parametric Kruskal–Wallis test is
used to compare the median result of each algorithm; otherwise, the homogeneity of the variances is checked by Levene test.
ANOVA test is invoked to verify the confidence of comparisons if the variances are equal, while Welch test is performed to
accomplish this task if the variances are different. 95% confidence level is adopted to compare the statistical significance be-
tween two competing algorithms, with � indicating that the JGBL variant is significantly better than its competing algorithm,
while � representing the opposite scenario.

4.4. Performance comparisons with baseline algorithms

Tables 3 and 4 present the statistical results of GD, SP, HV, while Table 5 gives the values of I� by each algorithm for each
test instance. The bottom rows of Tables 3 and 4 give the ratio of dominant performance for the corresponding metric. Spe-
cifically, 4/21 means the corresponding algorithm significantly outperform its competitor on 4 out of 21 instances for the
given metric.

From Tables 3–5, we can clearly find that the baseline algorithm can be substantially improved by the incorporation of
JGBL paradigm. Especially on the comprehensive metric HV, the outperformances of both JGBL variants are overwhelming
Table 3
Performance comparisons between NSGA-II and NSGA-II + JGBL.

Problems GD SP HV

NSGA-II NSGA-II + JGBL NSGA-II NSGA-II + JGBL NSGA-II NSGA-II + JGBL

ZDT 1 1.807E�4(6.75E�5)� 1.357E�4(1.66E�5) 7.206E�3(5.92E�4)� 6.643E�3(1.14E�3) 3.6588(3.99E�4)� 3.6604(2.11E�4)
ZDT 2 1.529E�4(2.99E�5)� 1.354E�4(1.47E�5) 7.402E�3(6.57E�4)� 6.892E�3(8.69E�4) 3.3244(6.07E�4)� 3.3273(1.45E�4)
ZDT 3 9.672E�5(4.70E�5)� 7.852E�5(7.69E�5) 7.911E�3(7.19E�4)� 7.165E�3(7.57E�4) 4.8127(4.02E�4)� 4.8148(1.17E�4)
ZDT 4 3.690E�4(1.79E�4)� 2.375E�5(1.99E�5) 7.539E�3(7.62E�4)� 6.734E�3(5.39E�4) 3.6514(5.52E�3)� 3.6610(1.62E�4)
ZDT 6 7.255E�4(7.63E�5)� 3.186E�4(4.87E�5) 5.614E�3(4.75E�4)� 5.227E�3(4.81E�4) 3.0196(2.66E�3)� 3.0397(3.66E�3)
DTLZ 1 6.743E�2(2.25E�1)� 4.686E�3(2.07E�2) 3.679E�1(1.66E+0)� 6.847E�2(1.84E�1) 0.9472(6.01E�2)� 0.9671(1.20E�3)
DTLZ 2 1.330E�3(1.72E�4)� 2.599E�3(1.09E�3) 5.769E�2(5.00E�3)� 6.058E�2(6.31E�3) 7.3261(2.55E�2) 7.3300(3.15E�2)
DTLZ 3 9.603E�1(1.09E+0)� 8.931E�2(3.17E�1) 3.935E+0(6.54E+0)� 5.027E�1(1.74E+0) 0.4963(1.29E+0)� 7.3466(7.64E�3)
DTLZ 4 8.362E�3(6.09E�3)� 5.722E�3(5.14E�3) 8.297E�2(4.01E�2)� 6.873E�2(1.65E�2) 6.8704(6.30E�1)� 7.3523(1.14E�2)
DTLZ 5 2.168E�4(7.22E�5)� 9.198E�5(3.33E�5) 9.809E�3(7.31E�4)� 8.557E�3(7.35E�4) 6.0998(1.12E�3) 6.1012(1.73E�3)
DTLZ 6 8.784E�2(1.24E�2)� 1.008E�5(3.94E�5) 9.399E�2(2.84E�2)� 1.128E�2(7.40E�4) 3.7386(2.98E�1)� 6.0991(1.07E�3)
DTLZ 7 3.702E�3(1.08E�3)� 1.755E�3(1.08E�3) 7.150E�2(9.56E�3)� 8.949E�2(2.13E�2) 13.0627(9.65E�2)� 13.2081(8.73E�2)
WFG 1 3.425E�2(8.71E�3)� 2.234E�2(1.20E�4) 2.109E�2(2.30E�2)� 2.568E�2(1.59E�2) 8.5732(6.62E�1)� 10.1808(3.76E�3)
WFG 2 1.053E�3(9.07E�4) 1.331E�3(8.84E�4) 1.541E�2(2.12E�3)� 1.637E�2(1.41E�2) 11.0217(4.16E�1)� 11.3750(2.50E�1)
WFG 3 7.000E�4(8.48E�5)� 5.812E�4(6.40E�5) 2.009E�2(1.66E�3)� 1.861E�2(1.77E�3) 10.9324(4.76E�3)� 10.9408(3.11E�3)
WFG 4 1.435E�4(1.66E�4)� 1.343E�3(1.52E�4) 2.175E�2(1.98E�3) 2.003E�2(2.23E�3) 8.6620(6.46E�3)� 8.6761(3.01E�3)
WFG 5 6.501E�3(4.84E�5)� 2.788E�3(1.07E�3) 2.156E�2(2.24E�3) 2.191E�2(2.59E�3) 8.1523(3.00E�2)� 8.6747(4.35E�1)
WFG 6 2.571E�3(2.52E�3)� 1.759E�3(2.36E�3) 2.209E�2(2.33E�3)� 2.023E�2(1.83E�3) 8.5249(1.60E�1)� 8.6234(3.67E�2)
WFG 7 9.656E�4(6.09E�5)� 8.677E�4(8.02E�5) 2.210E�2(1.98E�3)� 2.020E�2(1.73E�3) 8.6662(2.61E�3) 8.6693(3.70E�3)
WFG 8 2.549E�2(7.94E�3)� 1.245E�2(6.41E�3) 2.233E�2(6.29E�3)� 2.059E�2(2.52E�2) 7.1386(4.93E�1)� 8.1914(1.56E�2)
WFG 9 1.033E�3(2.59E�4)� 9.880E�4(1.71E�4) 2.093E�2(2.01E�3)� 2.000E�2(2.15E�3) 8.4279(2.43E�2)� 8.4358(1.72E�2)
Ratio 2/21 19/21 5/21 16/21 0/21 21/21

� and � denote that the performance of NSGA-II is significantly worse than and better than NSGA-II + JGBL, respectively. And the best mean values are
highlighted with bold face with gray background.



Table 4
Performance comparisons between SPEA2 and SPEA2 + JGBL.

Problems GD SP HV

SPEA2 SPEA2 + JGBL SPEA2 SPEA2 + JGBL SPEA2 SPEA2 + JGBL

ZDT 1 1.627E�4(5.97E�5) 1.635E�4(2.55E�5) 3.359E�3(3.67E�4)� 3.006E�3(3.41E�4) 3.6588(6.78E�4)� 3.6603(4.51E�4)
ZDT 2 1.569E�4(5.22E�5)� 9.085E�5(1.81E�5) 3.327E�3(3.40E�4)� 3.135E�3(2.52E�4) 3.3240(1.01E�3)� 3.3270(1.13E�3)
ZDT 3 9.720E�5(4.45E�5)� 4.300E�5(2.01E�5) 4.012E�3(4.64E�4)� 3.576E�3(4.7E�4) 4.7967(7.18E�2)� 4.8140(3.55E�4)
ZDT 4 5.802E�4(4.61E�4)� 7.865E�5(7.12E�4) 3.681E�3(1.15E�4)� 2.905E�3(2.11E�3) 3.6460(1.19E�2)� 3.6607(3.13E�2)
ZDT 6 1.118E�3(9.76E�4)� 4.697E�4(1.75E�4) 5.344E�3(9.97E�3)� 2.646E�3(2.78E�4) 3.0155(3.44E�3)� 3.0287(5.11E�3)
DTLZ 1 1.384E�1(2.47E�1)� 2.423E�3(7.93E�4) 1.067E�1(2.11E+0)� 1.918E� 2(8.22E�3) 0.9672(2.81E�2)� 0.9735(7.83E�4)
DTLZ 2 1.246E�3(2.22E�4)� 2.284E�3(2.98E�4) 2.364E�2(2.24E�3)� 2.192E�2(3.03E�3) 7.3826(1.24E�2)� 7.3924(8.78E�3)
DTLZ 3 4.700E�1(7.85E�1)� 2.425E�2(3.22E�1) 1.121E+0(2.58E+0)� 1.250E�1(1.33E+0) 2.0476(2.67E+0)� 7.1000(2.37E�2)
DTLZ 4 7.557E�3(6.18E�3)� 8.262E�3(6.33E�3) 6.495E�2(3.78E�2)� 6.148E�2(2.33E�2) 6.9638(6.18E�1) 7.0262(5.47E�1)
DTLZ 5 1.930E�4(5.42E�5)� 7.702E�5(4.53E�5) 4.684E�3(4.25E�4)� 3.660E�3(3.15E�4) 6.1038(2.94E�3) 6.1042(2.77E�3)
DTLZ 6 9.044E�2(8.83E�3)� 4.398E�6(9.76E�5) 7.161E�2(2.41E�2)� 4.357E�3(3.22E�4) 3.6928(2.61E�1)� 6.1166(3.01E�3)
DTLZ 7 3.874E�3(1.49E�3)� 1.562E�3(6.59E�3) 3.543E�2(6.15E�3)� 3.461E�2(4.55E�3) 13.2700(6.03E�1)� 13.3916(6.85E�1)
WFG 1 4.093E�2(1.26E�2)� 2.236E�2(1.35E�2) 1.518E�2(2.10E�2)� 5.652E�3(2.48E�3) 8.2083(7.31E�1)� 8.8902(5.36E�1)
WFG 2 7.333E�4(7.80E�4)� 6.812E�4(6.45E�4) 6.942E�3(1.18E�3)� 7.828E�3(1.55E�3) 10.9053(4.52E�1)� 11.4578(5.92E�1)
WFG 3 5.543E�4(5.31E�5)� 4.880E�4(3.81E�5) 9.475E�3(9.36E�4)� 1.094E�2(1.48E�3) 10.9432(3.69E�3)� 10.9525(2.58E�3)
WFG 4 1.524E�3(8.57E�5)� 1.507E�3(5.48E�5) 1.044E�2(1.29E�3)� 1.012E�2(1.00E�3) 8.6675(5.84E�3)� 8.6822(3.93E�3)
WFG 5 6.316E�3(2.23E�5)� 2.084E�3(3.13E�4) 1.048E�2(9.18E�4) 2.084E�3(9.00E�4) 8.1524(2.90E�2)� 8.6704(5.36E�2)
WFG 6 3.245E�3(2.84E�3)� 5.080E�4(5.74E�4) 1.047E�2(9.64E�4)� 9.692E�3(8.44E�4) 8.4764(1.82E�1)� 8.6539(4.61E�3)
WFG 7 7.884E�4(4.00E�5)� 7.420E�4(3.59E�5) 1.063E�2(1.04E�3)� 1.013E�2(9.76E�4) 8.6741(2.69E�3) 8.6786(2.17E�3)
WFG 8 2.986E�2(7.40E�3)� 9.937E�3(8.48E�4) 2.294E�2(2.69E�2)� 1.202E�2(4.83E�3) 6.9265(3.63E�1)� 8.1943(4.11E�1)
WFG 9 8.417E�4(3.50E�4)� 6.840E�4(2.34E�4) 1.115E�2(1.09E�3) 1.050E�2(1.44E�3) 8.4357(2.88E�2)� 8.4593(2.91E�2)
Ratio 3/21 18/21 2/21 19/21 0/21 21/21

� and � denote that the performance of the SPEA2 is significantly worse than and better than SPEA2 + JGBL, respectively. And the best mean values are
highlighted in bold face with gray background.

Table 5
The comparison results of NSGA-II + JGBL, SPEA2 + JGBL and their corresponding baseline algorithms on binary indicator I�.

NSGA-II SPEA2

< ^ w < ^ w

ZDT1 1978 101 421 1872 118 510
ZDT2 2011 87 402 2058 67 375
ZDT3 2005 89 406 2102 77 321
ZDT4 2015 81 404 2146 63 291
ZDT6 2024 90 386 2111 82 307
DTLZ1 2075 86 339 1774 315 411
DTLZ2 1569 458 473 1602 497 401
DTLZ3 2307 10 188 2331 15 154
DTLZ4 2013 208 279 317 1977 206
DTLZ5 944 625 931 898 802 800
DTLZ6 2232 42 226 2187 51 262
DTLZ7 1798 359 343 1877 272 351
WFG1 2110 106 284 2203 93 204
WFG2 2003 205 292 2134 185 181
WFG3 1788 343 369 1702 371 427
WFG4 1769 328 403 1695 410 395
WFG5 1988 253 259 2034 197 269
WFG6 1826 304 370 2041 165 294
WFG7 928 451 1121 1386 413 701
WFG8 2205 71 224 2354 21 125
WFG9 1558 409 533 1216 517 767

<, ^ and w record the number of times the JGBL variant performs better than, worse than and incomparable to its corresponding baseline algorithm,
respectively.
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without any exception. Figs. 8 and 9 show the PF approximations obtained in the run with the median HV value of each algo-
rithm for five selected test instances. It is evident that both JGBL variants obtain better approximations than their baseline
algorithms in terms of convergence and spread metrics. As shown in Figs. 8d and 9d, both NSGA-II and SPEA2 cannot
converge to the PF of DTLZ 3, while their JGBL variants converge well within 300 generations. The outperformance of JGBL
variants can be attributed to the additional exploitation of those eliminated non-dominated solutions, by which the explo-
ration ability is improved. WFG 1 can test an MOEA’s ability in coping with bias [14]. As shown in Figs. 8a and 9a, even
though the fronts obtained by both JGBL variants cannot completely converge to the PF, they are far better than those ob-
tained by their corresponding baseline algorithms. DTLZ 6 also has a strong bias feature [9]. Comparing to the well spreaded
and converged curves found by both JGBL variants, fronts obtained by NSGA-II and SPEA2 are not only scattered, but also lack



Fig. 8. Final solutions obtained by NSGA-II and NSGA-II + JGBL with median HV values.

Fig. 9. Final solutions obtained by SPEA2 and SPEA2 + JGBL with median HV values.
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of convergence. WFG 5 is a difficult problem with deceptive property [14]. Figs. 8b and 9b give us the clear illustration that
the Pareto curves obtained by JGBL variants have wider spread and better convergence. In addition to a significant bias, the
distance related parameters of WFG 8 are dependent on position related parameters. From the results shown in Figs. 8c and
9c, we can find that although solutions obtained by the JGBL variants do not cover the entire PF, they are much better than
those obtained by the baseline algorithms in terms of convergence and spread metrics. The outperformance of JGBL variants
in this case should be attributed to those diversified solutions generated by the JGBL paradigm. In summary, depending on
the properties of the test instances, the improvements brought by the JGBL paradigm are different. If the test instance has
distinct difficulties, such as multi-modality, bias or deceptive, on which the baseline algorithm cannot tackle well, the incor-
poration of JGBL paradigm has a larger chance to obtain substantial improvement. Otherwise, the improvement is limited,
since the baseline algorithm is able to tackle those test instances well enough.

Fig. 10 presents the evolution of the median HV values versus the number of generations for the JGBL variants and their
baseline algorithms. From these subfigures, we clearly find that HV values have been substantially increased by the incor-
poration of JGBL paradigm. In Fig. 10a, the placid trajectories of NSGA-II and SPEA2 should be ascribed to the local optima in
DTLZ 3. As for JGBL variants, the increase of HV values can be explained by the diversified solutions generated by the JGBL
paradigm, which helps the algorithm skip from the local optima. In Fig. 10b and c, the trajectories of JGBL variants always lay
above those of their baseline algorithms. Concerning the Fig. 10d, all trajectories surge up to a high level within 50 gener-
ations, and go to a stable stage afterwards. But the ascending slopes of JGBL variants are always larger than those of their
baseline algorithms.

4.5. Sensitivity study on hyper-parameters

Hereinafter, without loss of generality, only NSGA-II is considered as the baseline algorithm to further study the charac-
teristics of JGBL paradigm. Moreover, only the comprehensive metric HV and binary indicator I� are employed to evaluate the
performances of different algorithms. In JGBL paradigm, there are two hyper-parameters, i.e. jumping percentage and jumping
rate, to control the length of transposon and the frequency of JG operations. The effects of these two hyper-parameters are
comprehensively investigated as follows.
Fig. 10. Evolutionary trajectories of HV on four different test instances.
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Fig. 11. Sensitivity study of jumping percentage.
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Fig. 12. Sensitivity study of jumping rate.
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1. Sensitivity study on jumping percentage. The benchmark problems and parameter settings are kept the same as in Sections
4.1 and 4.3, except the jumping percentage and jumping rate. More specifically, jumping percentage is updated from 0.1 to
1.0 with the step size of 0.1, and the jumping rate is increased from 0.05 to 1.0 with the step size of 0.05 for each
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Fig. 13. The CPU-time costs on all test instances.

Table 6
CPU-time costs on three different test suites.

NSGA-II NSGA-II + JGBL Increase rate (%)

ZDT test suite 8.56 10.97 28.2
DTLZ test suite 19.68 26.29 33.6
WFG test suite 34.38 45.68 32.9
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investigated jumping percentage. In total, we have 10 � 20 parameter combinations for each test instance. Statistical
results are plotted as boxplots in Fig. 11, with the red1 square indicating the mean HV value obtained by a parameter com-
bination. The vertical axis of each subfigure indicates the HV value and the horizontal axis represents the variation of jump-
ing percentage. In general, these 21 subfigures can be divided into three different categories. The first one is featured by a
relatively low HV value when the jumping percentage is 0.1, then the HV value increases to a high level and keeps stable later
on. ZDT 1, ZDT 2, ZDT 4 and ZDT 6 belong to this category. The second category is characterized by a relatively stable ten-
dency of HV trajectory. That is to say, the performance of JGBL paradigm is not sensitive to the length of transposon in this
case. It consists of ZDT 3, DTLZ 2 to DTLZ 5 and DTLZ 7, WFG 2, WFG 6 to WFG 8. As for the last category, the HV value surges
up to a high level when the jumping percentage is small, and then it gradually decreases with the increase of this parameter
value. This implies that a large number of gene transpositions deteriorate the performance of JGBL paradigm when dealing
with these test instances.

2. Sensitivity study on jumping rate. Here the jumping percentage is fixed as 0.5 while the jumping rate is updated from 0.05
to 1.0 with step size of 0.05. The HV trajectories against different settings of jumping rate for all test instances are plotted
in Fig. 12. The vertical axis of each subfigure indicates the HV value and the horizontal axis represents the variation of
jumping rate. These trajectories can be generally divided into five categories. The first one is characterized as that the
HV value gradually decreases with the increase of jumping rate. Only DTLZ 1 belongs to this category, which indicates that
rare occurrence of JG operations is suitable for solving DTLZ 1. The second category, which consists of ZDT 3, DTLZ 2 and
DTLZ 5, is featured by a relatively stable trend. It means that the frequency of JG operations has little effect on the algo-
rithm’s performance. The HV trajectories of DTLZ 3, DTLZ 4 and DTLZ 6 are marked by the curves whose slopes are steep
when the jumping rate is small, and then keep stable later. The characteristic of the fourth category is that the HV value
increases rapidly when the jumping rate is small. However, the trend goes to a steady increasing state afterwards and
finally drops down when the jumping rate is larger than about 0.75. ZDT 1, ZDT 2, ZDT 4, WFG 3 and WFG 7 can be cat-
egorized into this taxonomy. As for the last category, the HV trajectories are with some oscillations, which indicate that it
is suitable to use JG operations more frequently in this case.

From the above parametric studies, we conclude that the performance of JGBL paradigm is sensitive to its two hyper-
parameters. In general, the ranges [0.3,0.6] for jumping percentage and [0.5,0.7] for jumping rate are recommended for com-
mon user.
1 For interpretation of color in Fig. 11, the reader is referred to the web version of this article.



Table 7
Performance comparison among different JGBL variants, NSGA-II and RJGGA on HV.

NSGA-II Variant-I Variant-II Variant-III Variant-IV RJGGA NSGA-II + JGBL

ZDT 1 3.6588(3.99E�4)� 3.6605(1.95E�4) 3.6595(3.28E�4) 3.6591(3.95E�4)� 3.6600(2.42E�4) 3.6593(3.11E�4) 3.6604(2.11E�4)
ZDT 2 3.3244(6.07E�4)� 3.3271(2.26E�4) 3.3264(3.63E�4) 3.3249(6.23E�4)� 3.3263(3.49E�4)� 3.3252(3.41E�4)� 3.3273 (1.45E�4)
ZDT 3 4.8127(4.02E�4)� 4.8145(9.86E�5) 4.8138(2.86E�4)� 4.8131(3.72E�4)� 4.8138(2.14E�4)� 4.8135(2.05E�4)� 4.8148(1.17E�4)
ZDT 4 3.6514(5.52E�3)� 3.6594(1.24E�4)� 3.6597(1.61E�3)� 3.6590(7.17E�3)� 3.6595(2.61E�3)� 3.6592(3.10E�3)� 3.6610(1.62E�4)
ZDT 6 3.0196(2.66E�3)� 3.0378(1.42E�3)� 3.0316(1.29E�3)� 3.0229(3.24E�3)� 3.0302(1.96E�3)� 3.0284(1.11E�3)� 3.0397(3.66E�3)
DTLZ 1 0.9472(6.01E�2)� 0.9678(1.32E�3) 0.9670(1.31E�3) 0.9478(6.23E�2)� 0.9688(6.93E�4)� 0.9611(7.51E�2)� 0.9671(1.20E�3)
DTLZ 2 7.3261(2.55E�2) 7.3271(2.05E�2) 7.3240(2.16E�2)� 7.3254(2.43E�2)� 7.3683(7.03E�3)� 7.3250(4.33E�2) 7.3300(3.15E�2)
DTLZ 3 0.4963(1.29E+0)� 7.3459(1.91E�2)� 7.3163(4.46E�2)� 0.9610(1.89E+0)� 4.8202(2.82E+0)� 6.4533(1.52E+0)� 7.3466(7.64E�3)
DTLZ 4 6.8704(6.30E�1)� 7.3594(5.10E�1) 7.3361(1.70E�2)� 6.8778(5.98E�2)� 7.0425(4.01E�1)� 7.3075(3.42E�2)� 7.3523(1.14E�2)
DTLZ 5 6.0998(1.12E�3)� 6.1021(1.70E�3)� 6.1004(1.75E�4) 6.1000(1.47E�3) 6.1009(1.61E�3) 6.1005(1.81E�3) 6.1012(1.73E�3)
DTLZ 6 3.7386(2.98E�1)� 6.1013(3.13E�3) 3.1508(5.04E�1)� 4.0019(2.60E�1)� 6.1019(1.59E�3)� 5.5438(2.47E�1)� 6.0991(1.07E�3)
DTLZ 7 13.0627(9.65E�2)� 13.1504(8.14E�2)� 13.0860(1.17E�1)� 13.0738(9.29E�2)� 13.1373(7.96E�2)� 13.1041(8.72E�2)� 13.2081(8.73E�2)
WFG 1 8.5732(6.62E�1)� 10.1692(3.53E�3)� 9.6220(5.43E�1)� 8.7059(7.65E�1)� 9.5592(3.83E�1)� 10.0049(5.20E�1)� 10.1808(3.76E�3)
WFG 2 11.0217(4.16E�1)� 11.3792(3.92E�1) 11.2211(3.73E�1)� 11.0058(4.15E�1)� 11.4578(7.37E�2)� 11.2958(6.46E�1)� 11.3750(2.50E�1)
WFG 3 10.9324(4.76E�3)� 10.9368(5.24E�3)� 10.9332(4.16E�2)� 10.9331(3.16E�3)� 10.9326(3.59E�3)� 10.9352(4.02E�3)� 10.9408(3.11E�3)
WFG 4 8.6620(6.46E�3)� 8.6722(5.78E�3)� 8.6639(5.39E�3)� 8.6641(4.67E�3)� 8.6662(5.91E�3)� 8.6683(5.82E�3)� 8.6761(3.01E�3)
WFG 5 8.1523(3.00E�2)� 8.6755(1.42E�1) 8.1639(6.17E�2)� 8.1615(3.22E�2)� 8.1637(3.23E�2)� 8.3056(5.31E�2)� 8.6747(4.35E�1)
WFG 6 8.5249(1.60E�1) 8.6136(1.49E�1) 8.6063(9.35E�2)� 8.5137(1.61E�2)� 8.6091(1.22E�1)� 8.6022(2.01E�1)� 8.6234(3.67E�2)
WFG 7 8.6662(2.61E�3)� 8.6717(2.69E�3)� 8.6654(3.31E�3) 8.6674(2.79E�3) 8.6678(2.12E�3) 8.6670(4.01E�3) 8.6693(3.70E�3)
WFG 8 7.1386(4.93E�1)� 8.1942(4.25E�1) 8.1298(2.75E�1)� 7.1684(4.81E�1)� 7.0413(4.69E�1)� 8.1423(5.72E�1)� 8.1914(1.56E�2)
WFG 9 8.4279(2.43E�2)� 8.4292(1.40E�2)� 8.4281(1.39E�2)� 8.4321(1.91E�2) 8.4308(1.79E�2) 8.4301(1.27E�2) 8.4358(1.72E�2)
Ratio 0/21 6/21 0/21 0/21 4/21 0/21 11/21

� and � denote that the performance of the corresponding algorithm is significantly worse than and better than NSGA-II + JGBL, respectively. And the best mean values are highlighted in bold face with gray
background.
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Table 8
The comparison results of NSGA-II + JGBL and several other JG variants on the binary indicator I�.

Problem Variant-I Variant-II Variant-III Variant-IV RJGGA

< ^ w < ^ w < ^ w < ^ w < ^ w

ZDT1 881 435 1184 1270 251 979 1797 132 571 1176 283 1041 1388 197 915
ZDT2 1089 242 1169 1201 199 1100 1995 120 385 1673 170 657 1689 154 657
ZDT3 985 406 1109 1536 264 700 1873 205 422 1504 273 723 1802 211 487
ZDT4 2002 100 398 1952 127 421 1899 115 486 1876 130 494 1998 107 395
ZDT6 1823 201 476 1934 183 383 1992 180 328 1989 176 335 2015 148 337
DTLZ1 682 691 1127 723 640 1137 2143 71 286 252 2017 231 1676 302 522
DTLZ2 1581 501 418 1867 354 279 1815 361 324 276 1995 229 1807 315 378
DTLZ3 1766 299 435 1888 216 396 2294 21 185 2071 62 367 1944 188 368
DTLZ4 798 821 881 1883 317 300 1991 213 296 1912 285 303 1799 259 442
DTLZ5 311 1895 294 900 743 857 904 802 794 888 902 710 891 725 884
DTLZ6 808 814 878 2076 113 311 1992 136 372 361 1724 415 1978 295 227
DTLZ7 1696 302 502 1954 292 254 2005 301 194 1893 268 339 1875 328 297
WFG1 1878 323 299 1971 286 243 2105 152 243 1968 301 231 1899 282 319
WFG2 777 761 962 1827 289 384 1949 211 340 311 1859 330 1831 252 417
WFG3 1802 322 376 1840 284 376 1911 295 294 1975 227 298 1799 363 338
WFG4 1713 361 426 1804 297 399 1797 344 359 1755 320 425 1811 334 355
WFG5 723 876 901 2113 202 184 2072 224 204 1992 273 235 1904 318 278
WFG6 915 367 1218 1756 310 434 1882 287 331 1801 371 328 1845 219 436
WFG7 511 1419 570 1091 478 931 844 530 1126 828 493 1179 972 367 1161
WFG8 879 721 900 1751 382 367 1922 208 370 2045 197 258 1817 414 269
WFG9 1511 385 604 1604 402 494 1305 601 594 1311 529 660 1455 514 531

<, ^ and w record the number of times NSGA-II + JGBL performs better than, worse than and incomparable to the corresponding algorithms, respectively.

Table 9
Performance comparisons between MOEA/D and NSGA-II + JGBL.

Problems GD SP HV

MOEA/D NSGA-II + JGBL MOEA/D NSGA-II + JGBL MOEA/D NSGA-II + JGBL

ZDT 1 1.650E�4(4.75E�5)� 1.357E�4(1.66E�5) 6.913E�3(2.54E�4)� 6.643E�3(1.14E�3) 3.6600(5.69E�4) 3.6604(2.11E�4)
ZDT 2 1.471E�4(3.53E�5) 1.354E�4 (1.47E�5) 4.450E�3 (8.78E�4)� 6.892E�3(8.69E�4) 3.3251 (3.24E�4) 3.3273(1.45E�4)
ZDT 3 8.532E�5(7.29E�5)� 7.852E� 5(7.69E�5) 2.239E�2(1.56E�4)� 7.165E�3(7.57E�4) 4.8147(1.18E�4) 4.8148(1.17E�4)
ZDT 4 3.111E�5(2.11E�5)� 2.375E�5 (1.99E�5) 7.374E�3(7.81E�4)� 6.734E�3(5.39E�4) 3.6602 (2.19E�4)� 3.6610(1.62E�4)
ZDT 6 3.199E�4(3.49E�5) 3.186E�4(4.87E�5) 2.869E�3(4.93E�4)� 5.227E �3(4.81E�4) 3.0391(3.18E�3) 3.0397(3.66E�3)
DTLZ 1 4.507E�3(2.98E�2) 4.686E�3 (2.07E�2) 7.136E�2(3.11E�2)� 6.847E �2(1.84E�1) 0.9563(4.99E�3)� 0.9671(1.20E�3)
DTLZ 2 9.388E�4(5.91E�4)� 2.599E�3(1.09E�3) 7.216E�2(4.33E�2)� 6.058E�2(6.31E�3) 7.3649 (4.33E�2)� 7.3300(3.15E�2)
DTLZ 3 5.601E�2(1.216E�1)� 8.931E�2(3.17E�1) 8.418E�1(1.48E+0)� 5.027E�1(1.74E+0) 7.3589(1.38E�2) 7.3466(7.64E�3)
DTLZ 4 5.828E�3(3.92E�3)� 5.722E�3 (5.14E�3) 8.383E�2(3.06E�2)� 6.873E�2(1.65E�2) 7.3058(7.03E�2)� 7.3523(1.14E�2)
DTLZ 5 4.401E�5(1.17E�5)� 9.198E�5(3.33E�5) 9.745E�3(1.81E�3)� 8.557E�3(7.35E�4) 6.0896(3.65E�3) 6.1012(1.73E�3)
DTLZ 6 8.429E�6(8.78E�6)� 1.008E�5(3.94E�5) 2.672E�2(7.02E�4)� 1.128E�2(7.40E�4) 5.9896 (3.14E�3)� 6.0991(1.07E�3)
DTLZ 7 8.370E�3(7.98E�4)� 1.755E�3 (1.08E�3) 1.227E�1(8.72E�2)� 8.949E�2(2.13E�2) 13.1038 (8.71E�2)� 13.2081(8.73E�2)
WFG 1 3.939E�2(1.57E�4)� 2.234E�2 (1.20E�4) 2.979E�2(2.03E�2)� 2.568E�2(1.59E�2) 9.0600 (5.19E�3)� 10.1808(3.76E�3)
WFG 2 2.173E�3(8.36E�1)� 1.331E�3 (8.84E�4) 5.077E�2(2.67E�2)� 1.637E�2(1.41E�2) 11.3188 (3.09E�1)� 11.3750(2.50E�1)
WFG 3 5.041E�4(5.97E�5)� 5.812E�4(6.40E�5) 2.470E�2(2.12E�3)� 1.861E�2(1.77E�3) 10.9405(4.02E�3) 10.9408(3.11E�3)
WFG 4 2.687E�3(1.87E�4)� 1.343E�3 (1.52E�4) 2.346E�2(2.81E�3)� 2.003E�2(2.23E�3) 8.5383 (4.14E�3)� 8.6761(3.01E�3)
WFG 5 6.052E�3(1.11E�3)� 2.788E�3 (1.07E�3) 2.797E�2(2.61E�3)� 2.191E�2(2.59E�3) 8.3185 (5.10E�1)� 8.6747(4.35E�1)
WFG 6 9.521E�4(4.09E�4)� 1.759E�3(2.36E�3) 2.601E�2(1.96E�3)� 2.023E�2(1.83E�3) 8.6681 (4.01E�1)� 8.6234(3.67E�2)
WFG 7 9.433E�4(9.05E�5)� 8.677E� 4(8.02E�5) 2.620E�2(1.95E�3)� 2.020E�2(1.73E�3) 8.6622(3.52E�3) 8.6693(3.70E�3)
WFG 8 1.760E�2(7.25E�3)� 1.245E�2 (6.41E�3) 2.550E�2(3.74E�1)� 2.059E�2(2.52E�2) 7.7569 (1.77E�2)� 8.1914(1.56E�2)
WFG 9 8.145E�4(1.27E�2)� 9.880E�4(1.71E�4) 2.580E�2(1.82E�3)� 2.000E�2(2.15E�3) 8.4256 (2.39E�2)� 8.4358(1.72E�2)
UF 1 1.023E�2(3.52E�3) 1.108E�2 (3.14E�3) 1.161E�1(8.08E�2)� 1.011E �1(7.52E�2) 3.5319(7.09E�2) 3.5310(7.51E�2)
UF 2 1.169E�2(2.23E�3)� 1.107E�2 (1.33E�3) 1.110E�2(4.17E �3)� 1.211E�2(5.87E�3) 3.6005(4.65E�2) 3.5847(4.22E�2)
UF 3 1.598E�3(3.49E�4) 1.579E�3(4.18E�4) 6.795E�3(2.77E�4)� 6.607E�3(3.09E�4) 3.6440(2.73E�1) 3.6512(1.99E�1)
UF 4 1.073E�2(5.13E�3) 1.066E�2(5.99E�3) 9.025E�3(8.73E�4)� 8.869E�3 (9.01E�4) 3.0741(3.34E�3)� 3.0822(3.01E�3)
UF 5 8.601E�2(2.42E�2)� 8.455E�2 (1.89E�2) 4.513E�2(1.55E�2)� 4.303E�2(1.14E�2) 1.5152 (4.16E�1)� 1.9823(4.51E�1)
UF 6 2.201E�2(5.17E�3)� 2.281E�2(5.63E�3) 1.335E�2(5.56E�3) 1.329E�2(5.71E�3) 3.1490(5.11E�1)� 3.1510(5.01E�1)
UF 7 7.199E�3(2.35E�4)� 7.020E �3(3.05E�4) 3.112E�2 (2.33E�2) 3.117E�2(2.95E�2) 3.4199(3.68E�1)� 3.4521(3.15E�1)
UF 8 2.125E�2(4.03E�3)� 2.305E�2(3.87E�3) 9.393E�2(1.00E�1) 9.101E �2(1.97E�1) 5.3131 (1.18E+0)� 5.3122(1.80E+0)
UF 9 1.086E�2(3.28E�3) 1.103E�2 (3.10E�3) 1.609E�1(9.24E�1)� 1.518E �1(8.01E�1) 3.8061(1.09E+0)� 3.8211(1.01E+0)
UF 10 1.036E�2(3.53E�3)� 1.001E� 1(2.99E�3) 2.166E�1(1.01E+0)� 2.033E�1(1.25E+0) 4.1176(1.61E+0)� 4.1582(1.55E+0)
Ratio 12/31 19/31 4/31 27/31 6/31 25/31

� and � denote that the performance of MOEA/D is significantly worse than and better than NSGA-II + JGBL, respectively. And the best mean values are
highlighted in bold face with gray background.
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4.6. CPU-time cost

The average CPU-time consumed by NSGA-II and NSGA-II + JGBL for all test instances are plotted in Fig. 13, and they are
further categorized into three different groups in Table 6. The last column of Table 6 records the increase rates of CPU-time
brought by the incorporation of JGBL paradigm. According to Table 6 and Fig. 13, it is observed that good performances
achieved by the incorporation of JGBL paradigm do not come for free. For most of the instances, the CPU-time costs of
NSGA-II + JGBL are larger than NSGA-II. More specifically, as shown in Table 6, the increase rate of CPU-time cost is 28.2%
when solving ZDT instances. However, as shown in Fig. 13, NSGA-II + JGBL spends more CPU-time only in solving ZDT 6,
whereas it costs even less CPU-time than NSGA-II in solving the other ZDT instances. This might be explained as NSGA-II
also generates many non-dominated solutions when solving those test instances. As for the DTLZ and WFG test suites,
NSGA-II + JGBL is more time-consuming than the baseline NSGA-II, except for DTLZ 3, DTLZ 4, WFG 6 and WFG 8. The extra
CPU-time should come from the additional round environmental selection.

4.7. Verification of the underlying rationale of JGBL paradigm

The effectiveness of our proposed JGBL paradigm has been fully demonstrated from the previous empirical studies. How-
ever, two questions are still unclear: (1) whether the superiority of JGBL paradigm really benefits from its motivated ratio-
nale? (2) How about the performance comparison with the existing JGGAs? To this end, NSGA-II + JGBL is modified into four
different variants, denoted as Variant-I to Variant-IV. In addition, our previously proposed RJGGA [24] is used as another
competing algorithm to answer the second question, in view of its good performances for solving continuous MOPs. Tech-
nical details of four artificial variants are given as follows.

1. Variant-I: The JG operation is employed to operate upon the entire hybrid population (i.e. Rt in Fig. 5) after the first
round environmental selection. Afterwards, the mutant population is merged with the non-dominated solutions sur-
vived from the first round environmental selection. Then another round environmental selection is raised to filter out
the parent population for the next generation.

2. Variant-II: Instead of exploiting the non-dominated solutions, this variant aims at mining information from the dom-
inated solutions in the hybrid population.

3. Variant-III: It uses traditional genetic search operators, i.e. SBX and polynomial mutation, to replace the JG operators
in the original JGBL paradigm.

4. Variant-IV: It uses Differential Evolution (DE) [29] operator to replace the JG operators in the original JGBL paradigm.
Here DE/rand/1/bin operator is chosen with CR = 0.2 and F = 0.2, as recommended in [17].

The benchmark problems and parameter settings are kept the same as in Sections 4.1 and 4.3. The performances of all algo-
rithms are evaluated by the HV metric and binary indicator I�, and the results are tabulated in Tables 7 and 8, respectively. From
these results, it is clear to see that the original JGBL paradigm is the best choice at hand, as it wins on 11 out of 21 test instances.
As for the other variants, Variant-I, which performs best, wins on six out of 21 test instances with two significantly better ones.
Its good performance can be explained by the secondary exploitation on the non-dominated solutions that are eliminated by
the first round environmental selection. However, in case the maximum number is fixed in advance, the exploitation upon
those dominated solutions can be regarded as a waste of function evaluations, since very little useful information can be
extracted from them. This explains why Variant-I cannot outperform the original JGBL paradigm. From the HV values obtained
Table 10
The comparison results of NSGA-II + JGBL and MOEA/D on binary indicator I�.

Problems < ^ w Problems < ^ w

ZDT1 1772 140 588 WFG5 1899 333 268
ZDT2 1706 135 659 WFG6 318 1784 398
ZDT3 1802 211 487 WFG7 1115 454 931
ZDT4 1998 107 395 WFG8 2013 206 281
ZDT6 2015 148 337 WFG9 1461 501 538
DTLZ1 1676 302 522 UF1 784 812 904
DTLZ2 1807 315 378 UF2 744 855 901
DTLZ3 1944 188 368 UF3 1611 388 495
DTLZ4 1799 259 442 UF4 1574 325 601
DTLZ5 891 725 884 UF5 1889 244 367
DTLZ6 1978 295 227 UF6 1396 593 511
DTLZ7 1875 328 297 UF7 1727 343 430
WFG1 1899 282 319 UF8 699 1250 551
WFG2 1831 252 417 UF9 1382 460 658
WFG3 1658 428 414 UF10 1701 391 408
WFG4 1901 259 340

<, ^ and w record the number of times NSGA-II + JGBL performs better than, worse than and incomparable to MOEA/D, respectively.



K. Li et al. / Information Sciences 226 (2013) 1–22 21
by Variant-II, we find that the exploitation upon the dominated solutions in JGBL paradigm is not a wise choice. This can be
explained by that little useful information contained in the dominated solutions, thus elite building blocks can be rarely gen-
erated. Regarding the other two variants, which replace the JG operators with the traditional genetic search operators and DE
operator, respectively, the outperformance of the original JGBL paradigm is still significant. Specifically, Variant-IV shows sig-
nificantly better performance on four out of 21 test instances, while Variant-III is the worst variant. Comparing to RJGGA, NSGA-
II + JGBL wins on all test instances, and shows significantly better performance on 16 of them. Anyway, all JGBL variants and
RJGGA outperform the baseline NSGA-II. Especially on DTLZ 3 and WFG 8, which are featured by the multi-modality, only
MOEAs with JG operators are able to obtain satisfactory results. Based on the above discussions, we conclude that the outper-
formance achieved by the JGBL paradigm should benefits from its underlying rationale, which is an intelligent cooperation of
horizontal and vertical gene movements.

4.8. Performance comparisons with the state-of-the-art MOEA/D

In this section, the performance of NSGA-II + JGBL is further compared with the state-of-the-art MOEA/D [18]. In addition
to the benchmark problems introduced in Section 4.1, 10 unconstrained instances [37], UF 1 to UF 10, are also considered in
the empirical study here. The parameters of MOEA/D are set the same as in its original paper [36], while those of NSGA-
II + JGBL are set the same as in Section 4.3, except that on UF 1 to UF 7 we evolve 300 generations and 500 generations
are required on UF 8 to UF 10. The performance of each algorithm is validated by the four metrics given in Section 4.2. As
shown in Tables 9 and 10, it is clear that NSGA-II + JGBL shows very competitive performance to MOEA/D. More specifically,
both NSGA-II + JGBL and MOEA/D perform comparatively similar on the relatively simple ZDT instances. As for DTLZ in-
stances, MOEA/D obtains better results on GD, while NSGA-II + JGBL performs better on SP, HV and I� metrics, and similar
trends can be found on WFG instances. As for the UF instances, which are with complicated PS and nonlinear parameter
dependencies, NSGA-II + JGBL still shows very competitive performances. In summary, the performances of NSGA-II + JGBL
are better than MOEA/D in terms of convergence and diversity for most of the cases. This owes to the enhanced exploration
ability brought by the JGBL paradigm, which is able to generate more elite building blocks, and thus a better grained search is
guaranteed.

5. Conclusion

In this paper, we proposed the JGBL paradigm to enhance the exploration ability of MOEAs. It adapts the JG operation to
the continuous search space. The underlying rationale of JGBL paradigm is exploiting the non-dominated solutions elimi-
nated by the environmental selection. From the empirical studies, significant improvements were found by the incorporation
of JGBL paradigm for the baseline MOEAs and its underlying rationale was also validated.
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