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Abstract—Multiobjective evolutionary algorithm based on
decomposition (MOEA/D), which bridges the traditional opti-
mization techniques and population-based methods, has become
an increasingly popular framework for evolutionary multiobjec-
tive optimization. It decomposes a multiobjective optimization
problem (MOP) into a number of optimization subproblems.
Each subproblem is handled by an agent in a collaborative man-
ner. The selection of MOEA/D is a process of choosing solutions
by agents. In particular, each agent has two requirements on
its selected solution: one is the convergence toward the efficient
front, the other is the distinction with the other agents’ choices.
This paper suggests addressing these two requirements by
defining mutual-preferences between subproblems and solutions.
Afterwards, a simple yet effective method is proposed to build an
interrelationship between subproblems and solutions, based on
their mutual-preferences. At each generation, this interrelation-
ship is used as a guideline to select the elite solutions to survive as
the next parents. By considering the mutual-preferences between
subproblems and solutions (i.e., the two requirements of each
agent), the selection operator is able to balance the convergence
and diversity of the search process. Comprehensive experiments
are conducted on several MOP test instances with complicated
Pareto sets. Empirical results demonstrate the effectiveness and
competitiveness of our proposed algorithm.

Index Terms—Convergence, decomposition, diversity, evolu-
tionary computation, multiobjective optimization.

I. INTRODUCTION

MULTIOBJECTIVE optimization problems (MOPs),
which naturally arise in many disciplines, such as opti-

mal design [1], economics [2], and electric power systems [3],
involve more than one objective function to tackle simul-
taneously. Since an evolutionary algorithm (EA) is able to

Manuscript received April 1, 2014; revised July 6, 2014 and
September 20, 2014; accepted October 15, 2014. Date of publication
December 4, 2014; date of current version September 14, 2015. This
work was supported in part by the Hong Kong Research Grants Council
General Research Funding under Grant 9042038 (CityU 11205314), and
in part by the National Natural Science Foundation of China under
Grant 6147324. This paper was recommended by Associate Editor
G. G. Yen.

K. Li and K. Deb are with the Department of Electrical and Computer
Engineering, Michigan State University, East Lansing, MI 48824 USA.

S. Kwong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong (e-mail: cssamk@cityu.edu.hk).

Q. Zhang is with the Department of Computer Science, City University of
Hong Kong, Hong Kong, and also with the School of Computer Science and
Electronic Engineering, University of Essex, Colchester CO4 3SQ, U.K.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

The supplementary file of this paper can be obtained via request to the first
author or downloaded from http://www.cs.cityu.edu.hk/~51888309/

Digital Object Identifier 10.1109/TCYB.2014.2365354

approximate multiple nondominated solutions, which portray
the trade-offs among conflicting objectives, in a single run,
it has been recognized as a major approach for multiobjec-
tive optimization [4]. Over the last two decades, much effort
has been devoted in developing multiobjective EAs (MOEAs)
(see [5]–[9]).

There are two basic requirements in evolutionary multiob-
jective optimization.

1) Convergence: The distance of solutions toward the
efficient front (EF) should be as small as possible.

2) Diversity: The spread of solutions along the EF should
be as uniform as possible.

Most MOEAs use selection operators to address these
two requirements. Depending on different selection mech-
anisms, the existing MOEAs can be classified into three
categories.

1) Pareto-Based Method: It uses Pareto dominance relation
as the primary selection criterion to promote the conver-
gence and the diversity is maintained by density metrics,
such as crowding distance in NSGA-II [6] and clustering
analysis in SPEA2 [10].

2) Indicator-Based Method: It uses a performance indi-
cator to guide the selection process (see [11]–[13]).
The most commonly used performance indicator is
hypervolume (HV) [14], which can measure conver-
gence and diversity simultaneously.

3) Decomposition-Based Method: It decomposes a MOP
into a number of single objective optimization sub-
problems by linear or nonlinear aggregation methods
(see [5], [15]), or several simple multiobjective subprob-
lems [16], and optimizes them in a collaborative manner.
It is worth noting that a neighborhood concept among
solutions was first proposed in [15] and then used in [5]
as a key algorithmic component.

The selection of Pareto-based methods is a convergence
first and diversity second strategy. As discussed in [16], such
mechanism has difficulties in tackling some problems with
particular requirements on diversity. HV indicator is a the-
oretically sound metric that measures both convergence and
diversity of a solution set [17]. However, as a selection crite-
rion, the balance between convergence and diversity of each
step is not adjustable. Since the update of population only
depends on the aggregation function of a subproblem, the
decomposition-based method also can be regarded as a con-
vergence first and diversity second strategy. However, due to
the specification of different search directions a priori, the
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decomposition-based method provides a more flexible manner
for balancing convergence and diversity.

MOEA/D [5], a decomposition-based method, has become
an increasingly popular choice for posteriori multiobjec-
tive optimization [18]. It has a number of advantages [19],
such as its scalability to problems with more than three
objectives [20], applicability for combinatorial optimization
problems [21], high compatibility with local search [22],
and capability for tackling problems with complicated Pareto
sets (PSs) [23]. However, as discussed in some recent studies
(see [18], [24], [25]), evenly distributed weight vectors, used
in the original MOEA/D, might not always lead to evenly
distributed Pareto-optimal solutions (e.g., when the EF is
disconnected, some weight vectors might not have solutions).

In MOEA/D, N subproblems are respectively handled by
N collaborative agents. Each agent has two requirements on
its selected solutions: one is the convergence toward the EF,
the other is the distinction with respect to the other solu-
tions in population. The selection of MOEA/D is a process
of choosing solutions by agents. In each step, the achieve-
ment of these two requirements for each agent is therefore
a balance between convergence and diversity of the search
process. However, most, if not all MOEA/D implementations
only explicitly consider the convergence requirement in selec-
tion, while the diversity issue is implicitly controlled by the
wide distribution of weight vectors. Differently, [26] provides
a first attempt to explicitly address those two requirements
by considering the mutual-preferences between subproblems
and solutions. Based on the preference articulations, a stable
matching model [27] is suggested to guide the selection pro-
cess. The encouraging results observed in [26] inspires our
further explorations along this direction. This paper develops
a simple yet effective method to establish an interrelation-
ship between subproblems and solutions. By simultaneously
exploiting the mutual-preferences between subproblems and
solutions, this interrelationship can be used as a guideline to
select the elite solutions to survive as the parents for the next
generation. As a result, our proposed selection operator is able
to allocate an appropriate solution to each agent (thus each
subproblem), and balance the convergence and diversity of
the search process.

In the remainder of this paper, we first provide some back-
ground knowledge in Section II. Then, we provide a revisit of
the selection process in MOEA/D in Section III. Afterwards,
the technical details of our proposed selection operator, based
on the interrelationship between subproblems and solutions,
are described in Section IV. Next, its incorporation into
MOEA/D is described in Section V. The general experimen-
tal settings are described in Section VI, and the empirical
results are presented and analyzed in Section VII. Finally,
Section VIII concludes this paper and provides some future
directions.

II. PRELIMINARIES AND BACKGROUND

In this section, we first provide some basic definitions
of multiobjective optimization. Afterwards, we introduce a
classical decomposition method used in this paper.

A. Basic Definitions

A MOP can be stated as follows:

minimize F(x) = ( f1(x), . . . , fm(x))T

subject to x ∈ � (1)

where � =∏n
i=1 [ai, bi] ⊆ R

n is the decision (variable) space,
and a solution x = (x1, . . . , xn)

T ∈ � is a vector of decision
variables. F : � → R

m constitutes m real-valued objective
functions and R

m is called the objective space. The attainable
objective set is defined as the set � = {F(x)|x ∈ �}. Due to
the conflicting nature of MOP, only partial ordering can be
specified among solutions. In other words, for two solutions
x1, x2 ∈ �, it can so happen that F(x1) and F(x2) are incom-
parable. Some definitions related to MOP are given as follows
in the context of minimization problems.

Definition 1: A solution x1 is said to Pareto dominate a
solution x2, denoted as x1 � x2, if and only if fi(x1) ≤ fi(x2)

for every i ∈ {1, . . . , m} and fj(x1) < fj(x2) for at least one
index j ∈ {1, . . . , m}.

Definition 2: A solution x∗ ∈ � is said to be Pareto-optimal
if there is no other solution x ∈ � such that x � x∗.

Definition 3: The set of all Pareto-optimal solutions is
called the PS. Accordingly, the set of all Pareto-optimal
objective vectors EF = {F(x) ∈ R

m|x ∈ PS}, is called the EF.
Definition 4: The ideal objective vector z∗ is z∗ =

(z∗1, . . . , z∗m)T , where z∗i = min
x∈� fi(x), i ∈ {1, . . . , m}.

Definition 5: The nadir objective vector znad is znad =
(znad

1 , . . . , znad
m )T , where znad

i = max
x∈PS

fi(x), i ∈ {1, . . . , m}.

B. Decomposition Method

In the classical multiobjective optimization [28], there are
several approaches for constructing aggregation functions to
decompose the MOP, in question, into a single-objective opti-
mization subproblem. Among them, the most popular ones
are weighted sum, Tchebycheff (TCH) and boundary intersec-
tion approaches [29]. In this paper, without loss of generality,
we only consider the TCH approach, which is mathematically
defined as follows:1

minimize gtch(x|w, z∗∗) = max
1≤i≤m

{| fi(x)− z∗∗i |/wi}
subject to x ∈ � (2)

where w = (w1, . . . , wm)T is a user specified weight vector,
wi ≥ 0 for all i ∈ {1, . . . , m} and

∑m
i=1 wi = 1. In practice,

wi is set to be a very small number, say 10−6, in case wi =
0. z∗∗ = (z∗∗1 , . . . , z∗∗m )T , where z∗∗i = z∗i − ε for all i ∈
{1, . . . , m}, ε > 0 is a very small number, say 10−6. Under
some mild conditions, the optimal solution of (2) is a Pareto-
optimal solution of the MOP in question. By altering weight
vectors, TCH approach is able to find different Pareto-optimal
solutions. The search direction of TCH approach is w.

1The definition of TCH approach in this paper is different from that in [5].
This setting can produce more uniformly distributed solutions in the objective
space [18]. Due to the page limit, more discussions on (2) are presented in
the supplemental file of this paper.
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Fig. 1. Illustration of two requirements of an agent.

III. REVISITS OF THE SELECTION PROCESS IN MOEA/D

In MOEA/D, N subproblems are respectively handled by N
collaborative agents. Selection, in the context of MOEA/D, can
thus be regarded as a process of choosing solutions by agents.
In particular, each agent has the following two requirements
on its selected solution.

1) Convergence: The selected solution should have a as
good as possible aggregation function value for the
underlying subproblem.

2) Diversity: The selected solution should be different from
the other agents’ choices as much as possible.

Fig. 1 gives an intuitive explanation on these two require-
ments. As discussed in Section II-B, the optimal solution of a
subproblem is a Pareto-optimal solution of the MOP in ques-
tion. Therefore, the convergence requirement is easy to under-
stand as the responsibility of an agent is to optimize its handled
subproblem. As the optimal solution of a subproblem is usu-
ally on the direction line of the corresponding weight vector
and weight vectors are designed to be evenly distributed [5],
a unique and distinctive solution for each agent (thus for each
subproblem) implies a promising population diversity and a
well distribution along the PF. The more these two require-
ments are satisfied, the better is the quality of a solution.
Depending on different specifications of these two require-
ments, the selection mechanisms of existing MOEA/D imple-
mentations can be understood from the following three ways.

1) Most MOEA/D implementations update the population
based on the aggregation function value of a solution.
In this case, only the convergence requirement has been
explicitly considered by an agent in selection, while the
diversity issue is implicitly controlled by the wide dis-
tribution of weight vectors. As more than one solution
might have similar aggregation function values for the
same subproblem, this update mechanism might result
in the loss of population diversity.

2) In [5], the penalty-based boundary intersection (PBI)
approach presents an avenue to aggregate these two
requirements into a single criterion. In particular, the
PBI approach is formulated as

minimize gpbi(x|w, z∗) = d1 + θd2

subject to x ∈ � (3)

where d1 is the distance between z∗ and the projection
of x on the direction line of w, and d2 is the per-
pendicular distance between x and the direction line
of w. Intuitively, d1 can be regarded as a measure
of the convergence requirement and d2 is a diversity
measure. Although the PBI approach has explicitly inte-
grated these two requirements, it still has the problem
mentioned in the first issue.

3) By defining the mutual-preferences between subprob-
lems and solutions, [26] suggests a method to tackle
these two requirements separately. In particular, the pref-
erence of a subproblem over a solution measures the
convergence issue; while, similar to the effect of d2
in PBI approach, the preference of a solution over a
subproblem measures the diversity issue. The selection
process is thereafter coordinated by a stable matching
model which finds a suitable matching between subprob-
lems and solutions. Since the stable matching achieves
an equilibrium between the mutual-preferences of sub-
problems and solutions, this selection mechanism strikes
a balance between convergence and diversity of the
search process.

From the encouraging results reported in [26], we find the
effectiveness and advantages of treating agents’ two require-
ments explicitly and separately. This paper presents a further
attempt along this direction. In particular, according to the
two requirements of each agent, an interrelationship between
subproblems and solutions is built upon the specifications of
their mutual-preferences. Afterwards, based on this interrela-
tionship, a simple yet effective method is proposed to guide
the selection process.

IV. SELECTION OPERATOR BASED ON

INTERRELATIONSHIP

Given a set of subproblems P = {p1, . . . , pN} and a set of
solutions S = {x1, . . . , xM} (M > N), the selection process is
to choose the appropriate solution for each subproblem.

A. Mutual-Preference Setting

As discussed in Section III, an agent has two require-
ments (i.e., convergence and diversity) on its selected solution.
From the perspectives of subproblems and solutions, these
two requirements can be defined as their mutual-preferences.
Different mutual-preference settings can lead to different
behaviors of the selection process. Without loss of general-
ity, we provide a simple way in setting mutual-preferences as
follows.

1) A subproblem p prefers solution x that has a better
aggregation function value. Therefore, the preference
value of x with regard to p, denoted as �P(p, x), is
evaluated by the aggregation function of p

�P(p, x) = g
(
x|wp, z∗∗

)
(4)

where wp is the weight vector of p and g(∗|∗) is the
aggregation function of p. Obviously, �P(p, x) mea-
sures the achievement of convergence requirement of
the agent, which handles p, on x.
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Fig. 2. Illustration of the niche count, e.g., nc(p3) = 3.

2) A solution x favors subproblem p on which x can
have a as good as possible aggregation function value.
Moreover, in MOEA/D, each weight vector also spec-
ifies a subregion in the objective space. Consider the
population diversity, the subregion corresponding to p,
in the objective space, should be as sparse as possible.
In view of these two considerations, the preference value
of p with regard to x, denoted as �X(x, p), is calculated
based on the following form:

�X(x, p) = d⊥(x, p)+ nc(p) (5)

where d⊥(x, p) is the perpendicular distance between x
and the weight vector of p, it is calculated as follows:

d⊥(x, p) = F(x)− wTF(x)

wTw
w (6)

where F(x) is the normalized objective vector of x, and
its kth individual objective function is normalized as

f k(x) = fk(x)− z∗k
znad

k − z∗k
(7)

�X(x, p) measures the achievement of diversity require-
ment of the agent, which handles p, on x. The first item
of (5) plays the same effect as d2 in PBI approach, while,
inspired by [20], the second item nc(p), the niche count
of p, plays as a density estimator. In order to evalu-
ate the niche count of the subregion corresponding to a
subproblem, we first initialize it to be zero. Afterwards,
based on the perpendicular distances between subprob-
lems and solutions, the subproblem whose weight vector
is closest to x is considered to be associated with x. And
the niche count of the subregion corresponding to the
subproblem is incremented by one. A simple example
to illustrate the evaluation of niche count is presented
in Fig. 2, where the dotted line connects a subproblem
with its associated solutions and the dotted circle repre-
sents the niche around a subproblem. The niche count
of a subproblem is the number of solutions associated
with it, e.g., nc(p3) = 3.

Algorithm 1: COMPTPREF(S, P, z∗, znad)

Input: solution set S, subproblem set P, the ideal and
nadir objective vectors z∗, znad

Output: preference matrices �X and �P, distance
ordering matrix �d⊥

1 for i← 1 to M do

2 F(xi)← F(xi)−z∗
znad−z∗ ;

3 end
4 for i← 1 to M do
5 for j← 1 to N do
6 �P(p j, xi)← g(xi|wj, z∗);
7 d⊥(xi, p j)← F(xi)− wjT F(xi)

wjT wj wj;
8 end
9 end

10 Sort each row of d⊥ in ascending order and keep the
sorted indices in �d⊥ ;

11 for i← 1 to N do
12 nc[i]← 0;
13 end
14 Normalize d⊥ and nc to range [0, 1] respectively;
15 for i← 1 to M do
16 nc[�d⊥(i, 1)]← nc[�d⊥(i, 1)]+ 1;
17 end
18 for i← 1 to M do
19 for j← 1 to N do
20 �X(xi, p j)← d⊥(xi, p j)+ nc( j);
21 end
22 end
23 return �X,�P, �d⊥

The pseudo-code of evaluating the mutual-preferences
between subproblems and solutions is given in Algorithm 1.

B. Interrelationship Between Subproblems and Solutions

Based on the above mutual-preference settings, we build
an interrelationship between subproblems and solutions in the
following manner.

1) Selection of the Related Subproblems for Each Solution:
Sort each row of �X in ascending order and keep
the sorted indices in �X . For each solution xi ∈ S,
i ∈ {1, . . . , M}, the first Kd subproblems in the ith row of
�X are selected as the related subproblems of xi, where
Kd is a user-specified parameter.

2) Selection of the Related Solutions for Each Subproblem:
For each subproblem p j, j ∈ {1, . . . , N}, let �j denote
the set that contains all solutions whose related subprob-
lems include p j. Then, the set of related solutions of p j,
denoted as χ j, is formulated as follows.

a) If �j = ∅, χ j is set to be an empty set, i.e.,
χ j = ∅.2

b) If 0 < |�j| ≤ ϑ , where ϑ > 0 is a control
parameter, χ j is set to be �j, i.e., χ j = �j.

c) Otherwise, χ j is set to include the ϑ closest
solutions to p j in �j.

2An example of empty χ is presented in the supplemental file of this paper.
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Fig. 3. Example of the interrelationship between subproblems and solutions.

Algorithm 2: INTERRELATION(�X, �d⊥)

Input: preference matrix �X , distance ordering
matrix �d⊥

Output: list of related solutions of subproblems χ

1 Sort each row of �X in ascending order and keep the
sorted indices in �X;

2 for i← 1 to N do
3 for j← 1 to M do
4 for k← 1 to Kd do
5 if �X( j, k) = i then
6 χ [i].add( j);
7 end
8 end
9 end

10 end
11 for i← 1 to N do
12 if χ [i].size> ϑ then
13 Keep the ϑ ones in χ [i] that have the highest

ranks in �d⊥ ;
14 end
15 end
16 return χ

Considering the same example discussed in Fig. 2, Fig. 3
gives a simple illustration on the interrelationship between sub-
problems and solutions. Let Kd = ϑ = 3, according to the
above rules, the related subproblems of x7 is {p2, p3, p4}, and
the related solutions of p5 is {x8, x9, x10}. The pseudo-code of
interrelationship building is given in Algorithm 2.

C. Selection Operator

Based on the interrelationship between subproblems and
solutions, an agent selects its preferred solution as follows.

1) For a subproblem pi, i ∈ {1, . . . , N}, which has a
nonempty χ i, its hosted agent selects the best solution
(in terms of the preference values in the ith row of �P)
from χ i to be included in S.

2) For a subproblem p j, j ∈ {1, . . . , N}, which has an
empty χ j, its hosted agent selects the best solution (in
terms of the preference values in the jth row of �P)
from the set of unselected solutions to be included in S.

Algorithm 3: SELECTION(S,�P, χ)

Input: solution set S, preference matrix �P, list of
related solutions of subproblems χ

Output: solution set S
1 S← ∅;
2 for i← 1 to N do
3 if χ [i].size! = 0 then
4 Choose one solution x in χ [i] with the best

preference value in the ith row of �P;
5 S← S

⋃{x};
6 else
7 ϕ.add(i);
8 end
9 end

10 for i← 1 to ϕ.size do
11 Choose one unselected solution x in S with the best

preference value in the ϕ.get(i)th row of �P;
12 S← S

⋃{x};
13 end
14 return S

Particularly, this process is conducted in a random order
for such subproblems.

It is worth noting that case 2) is not conducted until the
completion of case 1). The selected solutions are survived as
the parents for the next generation. Algorithm 3 presents the
pseudo-code of this selection operator.

D. Computational Complexity Analysis

As the preliminary of interrelationship building, we first
evaluate the mutual-preferences between subproblems and
solutions. In particular, the evaluations of �p for all sub-
problems require O(mMN) computations. Moreover, in the
worst case, the calculations of distances between subprob-
lems and solutions, and the evaluations of niche counts for
all subproblems cost O(mMN) and O(MN) computations,
respectively. Therefore, the evaluations of �X for all solutions
cost O(mMN) computations. Afterward, for each solution,
the worst case complexity for selecting its related subprob-
lems is O(NlogN). For each subproblem, the selection of its
related solutions requires O(MKd) comparisons. Therefore,
the worst case complexity of the interrelationship building
is max{O(MNlogN), O(MNKd)}, whichever is larger. Based
on the interrelationship, the selection of solutions for the
next generation requires O(Nϑ) comparisons. In summary,
the worst case complexity of the selection operator based on
interrelationship is max{O(MNlogN), O(MNKd)}.

E. Comparisons With MOEA/D-STM

As mentioned in Section III, this paper is a further attempt
in [26]. This section discusses the similarities and differences
between MOEA/D-IR and MOEA/D-STM. More specifically,
these two algorithms have the following two similarities.

1) Both of them are developed upon the high-level frame-
work introduced in Section III. The selection operators
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are developed from the perspectives of agents, and the
convergence and diversity issues are treated separately
and explicitly.

2) Both of them use the same metric to evaluate the
preference of a solution with regard to a subproblem.

These two algorithms have the following two differences.
1) The preference of a subproblem p with regard to a

solution x is different. In MOEA/D-STM, only the per-
pendicular distance between x and the weight vector of
p is considered, while, in this paper, the niche count
of p, used to estimate the local density, is considered
as an additional term to the perpendicular distance. This
modification further improves the population diversity.

2) The selection mechanisms of these two algorithms are
essentially different.

a) MOEA/D-STM uses a stable matching model to
find a suitable matching between subproblems
and solutions. The stable matching between sub-
problems and solutions achieves an equilibrium
between their mutual-preferences. Thus, this selec-
tion mechanism strikes a balance between conver-
gence and diversity simultaneously.

b) In MOEA/D-IR, the selection of an appropriate
solution for each subproblem is based on the
interrelationship between subproblems and solu-
tions. In particular, the interrelationship, built upon
the preference values of solutions with regard to
subproblems, concerns the diversity issue; while
the selection process, depending on the prefer-
ence values of subproblems to solutions, concerns
the convergence issue. In principle, this selection
mechanism is a diversity first and convergence
second strategy.

V. INCORPORATION INTO MOEA/D

In this section, we present how to incorporate the pro-
posed selection operator, based on the interrelationship
between subproblems and solutions, into the framework of
MOEA/D. The pseudo-code of the resulted algorithm, denoted
as MOEA/D-IR, is given in Algorithm 4. It is derived
from MOEA/D-DRA [30], a MOEA/D variant with dynamic
resource allocation scheme. MOEA/D-DRA was the winning
algorithm in the CEC2009 MOEA competition [31]. It is
worth noting that the difference between MOEA/D-IR and
the original MOEA/D only lie in the selection process. Some
important components of MOEA/D-IR are further illustrated
in the following paragraphs.

A. Initialization

In case no prior knowledge about the search landscape at
hand, the initial population S1 = {x1, . . . , xN} can be randomly
sampled from � via a uniform distribution. Since the exact
ideal objective vector is usually unknown a priori, here we
use its approximation, which is set as the minimum F-function
value of each objective, i.e., z∗i = min{ fi(x)|x ∈ S1}, for all
i ∈ {1, . . . , m}, instead. Analogously, the nadir objective vector

Algorithm 4: MOEA/D-IR

1 Initialize the population S← {x1, . . . , xN}, a set of
weight vectors W ← {w1, . . . , wN}, the ideal and nadir
objective vectors z∗, znad;

2 Set neval← 0, iteration← 0;
3 for i← 1 to N do
4 B(i)← {i1, . . . , iT} where wi1 , . . . , wiT are the T

closest weight vectors to wi;
5 π i ← 1;
6 end
7 while Stopping criterion is not satisfied do
8 Let all indices of the subproblems whose objectives

are MOP individual objectives fi form the initial I.
By using ten-tournament selection based on π i, select
other 
N/5� − m indices and add them to I.

9 Q← ∅;
10 for each i ∈ I do
11 if uniform(0, 1) < δ then
12 E← B(i);
13 else
14 E← S;
15 end
16 Randomly select three solutions xr1 , xr2 , and xr3

from E;
17 Generate a candidate x by using the method

described in Section V-B and Q← Q
⋃{x};

18 Evaluate the F-function value of x;
19 Update the current ideal objective vector z∗;
20 Update the current nadir objective vector znad;
21 neval++;
22 end
23 R← S ∪ Q;
24 [�X,�P, �d⊥ ]← COMPTPREF(R, W, z∗, znad);
25 χ ← INTERRELATION(�X, �d⊥);
26 S← SELECTION(R,�P, χ);
27 iteration++;
28 if mod(iteration, 30) = 0 then
29 Update the utility of each subproblem;
30 end
31 end
32 return S;

is approximately set as znad
i = max{ fi(x)|x ∈ S1}, for all

i ∈ {1, . . . , m}.
We initialize a set of weight vectors W = {w1, . . . , wN}

that are evenly spread in the objective space. These weight
vectors also define the subproblems and their search direc-
tions. Here, we set the number of weight vectors be equal to
the population size. The chosen of weight vectors can either
be predefined in a structured manner or supplied preferentially
by the user. In this paper, we use the method proposed in [29]
to generate the evenly spread weight vectors on a unit sim-
plex. Each element of a weight vector w takes a value from
{0/H, 1/H . . . , H/H}, where H is the number of divisions
along each coordinate. In total, the number of weight vectors
is N = (H+m−1

m−1

)
. After the generation of W, the Euclidean
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distance between any two weight vectors is computed. For
each weight vector wi, i ∈ {1, . . . , N}, let B(i) = {i1, . . . , iT}
be the neighborhood set of wi, where wi1 , . . . , wiT are the
T (1 ≤ T ≤ N) closest weight vectors of wi.

B. Reproduction

The reproduction process is to generate the offspring pop-
ulation Qt = {x1, . . . , xN}, where t is the generation counter.
In general, any genetic operator can serve this purpose. In this
paper, we use the differential evolution (DE) operator [32] and
polynomial mutation [33] as done in [23]. To be specific, an
offspring solution xi = {xi

1, . . . , xi
n} is generated as follows:

ui
j =

{
xr1

j + F ×
(

xr2
j − xr3

j

)
if rand < CR or j = jrand

xi
j otherwise

(8)

where CR and F are two control parameters of DE operator,
rand is a random real number uniformly sampled from [0, 1],
jrand is a random integer uniformly chosen from 1 to n, xr1 ,
xr2 , and xr3 are three solutions randomly chosen from E. Then,
the polynomial mutation acts upon each ui to obtain the xi

xi
j =

{
ui

j + σj × (bj − aj) if rand < pm

ui
j otherwise

(9)

with

σj =
{

(2× rand)
1

η+1 − 1 if rand < 0.5

1− (2− 2× rand)
1

η+1 otherwise
(10)

where j ∈ {1, . . . , n}, the distribution index η and mutation
rate pm are two control parameters. aj and bj are the lower
and upper bounds of the jth decision variable.

VI. EXPERIMENTAL SETTINGS

This section devotes to the experimental design for the per-
formance investigations of our proposed MOEA/D-IR. At first,
we give the descriptions of benchmark problems and perfor-
mance metrics. Then, we briefly introduce six MOEAs used
for comparisons. At last, we illustrate the parameter settings
of the empirical studies.

A. Test Instances

Twenty-six unconstrained MOP test instances are employed
here as the benchmark problems for empirical studies. To
be specific, UF1 to UF10 are used as the benchmark in
CEC2009 MOEA competition [31], and MOP1 to MOP7
are recently proposed in [16]. These test instances have dis-
tinct characteristics, and their PSs in the decision space are
very complicated. We also consider WFG test suite [34],
which has a wide range of problem characteristics, includ-
ing nonseparable, deceptive, degenerate problems, mixed PF
shape, and variable dependencies, for investigation. The num-
ber of decision variables of UF1 to UF10 is set to 30; for
MOP1 to MOP7, the number of decision variables is set
to 10; for WFG1 to WFG9, the number of objectives is set
to 2, the numbers of position- and distance-related decision
variables are set to 2 and 4, respectively.Interested readers
are recommended to [16], [31], and [34] for more detailed
information.

B. Performance Metrics

No unary performance metric can give a comprehensive
assessment on the performance of an MOEA [35]. In our
empirical studies, we consider the following two widely used
performance metrics.

1) Inverted Generational Distance (IGD) Metric [36]: Let
P∗ be a set of points uniformly sampled along the PF,
and S be the set of solutions obtained by an MOEA. The
IGD value of S is calculated as

IGD(S, P∗) =
∑

x∈P∗ dist(x, S)

|P∗| (11)

where dist(x, S) is the Euclidean distance between the
point x and its nearest neighbor in S, and |P∗| is
the cardinality of P∗. The PF of the underlying MOP
is assumed to be known a priori when using the
IGD metric. In our empirical studies, 1000 uniformly
distributed points are sampled along the PF for the bi-
objective test instances, and 10 000 for three-objective
ones, respectively.

2) HV Metric [14]: Let zr = (zr
1, . . . , zr

m)T be a refer-
ence point in the objective space that is dominated by
all Pareto-optimal objective vectors. HV metric mea-
sures the size of the objective space dominated by the
solutions in S and bounded by zr

HV(S) = VOL

(
⋃

x∈S

[
f1(x), zr

1

]× . . .
[

fm(x), zr
m

]
)

(12)

where VOL(·) indicates the Lebesgue measure. In our
empirical studies, zr = (2.0, 2.0)T for bi-objective
UF and MOP instances and zr = (2.0, 2.0, 2.0)T for
three-objective ones, respectively. For WFG instances,
zr = (3.0, 5.0)T .

Both IGD and HV metrics can measure the convergence and
diversity of S simultaneously. The lower is the IGD value (or
the larger is the HV value), the better is the quality of S for
approximating the entire PF. Comparison results are presented
in the corresponding data tables, where the best mean metric
values are highlighted in bold face with gray background. In
order to have statistically sound conclusions, Wilcoxon’s rank
sum test at a 5% significance level is conducted to compare
the significance of difference between two algorithms.

C. Six MOEAs Used for Comparisons

In order to validate our proposed algorithm, six MOEAs are
considered here for comparative studies.

1) MOEA/D-DRA [30]: It was the winning algorithm in
CEC2009 MOEA competition. Different from the pre-
vious MOEA/D variants, in which every subproblem
receives the same amount of computational effort, it
dynamically allocates the computational resources to
different subproblems based on their utilities.

2) MOEA/D-FRRMAB [37]: It is a recently proposed
MOEA/D variant that applies a multiarmed bandit model
to adaptively select reproduction operators based on their
feedbacks from the search process.
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3) MOEA/D-M2M [16]: It is a recently proposed MOEA/D
variant, which decomposes an MOP into a set of sim-
ple multiobjective subproblems. Different from the other
MOEA/D variants, each subproblem in MOEA/D-M2M
has its own population and receives the corresponding
computational effort at each generation.

4) MOEA/D-STM [26]: It is a recently proposed MOEA/D
variant, which employs a stable matching model to coor-
dinate the selection process of MOEA/D. It is worth
noting that both MOEA/D-STM and MOEA/D-IR are
developed upon the high-level framework introduced
in Section III.

5) NSGA-II [6]: It is the most popular Pareto-based
MOEA, which is characterized by the fast nondomi-
nated sorting procedure for emphasizing the convergence
and the crowding distance for maintaining the diversity.
As in [23], we use the reproduction method described
in Section V-B to generate new offspring solutions.

6) HypE [38]: It is a well-known indicator-based MOEA,
which uses the HV metric as the guideline of its
selection process. In order to reduce the computational
complexity in HV calculation, HypE employs Monte
Carlo simulation to approximate the HV value.

D. General Parameter Settings

The parameters of MOEA/D-DRA, MOEA/D-FRRMAB,
MOEA/D-M2M, MOEA/D-STM, NSGA-II, and HypE are set
according to [6], [16], [26], [30], [37], and [38]. All these
MOEAs are implemented in JAVA,3 except MOEA/D-M2M
in MATLAB and HypE in ANSI C.4 The detailed parame-
ter settings of our proposed MOEA/D-IR are summarized as
follows.

1) Settings for Reproduction Operators: The mutation
probability pm = 1/n and its distribution index
μm = 20 [4]. For UF and MOP instances, we set
CR = 1.0 and F = 0.5 as recommended in [23], while
for WFG instances, we set CR = 0.5 and F = 0.5.

2) Population Size: N = 600 for UF1 to UF7 instances,
N = 1000 for UF8 to UF10 instances, N = 100 for
MOP1 to MOP5 instances, and N = 300 for MOP6
and MOP7 instances, N = 100 for WFG1 to WFG9
instances.

3) Number of Runs and Termination Condition: Each algo-
rithm is independently launched 20 times on each test
instance. The termination condition of an algorithm is
the predefined number of function evaluations, which is
set to be 3 00 000 for UF and MOP instances and 25 000
for WFG instances.

4) Number of Related Subproblems Chosen for a Solution:
Kd = 2.

5) Number of Related Solutions Chosen for a Subproblem:
ϑ = 8.

6) Neighborhood Size: T = 20.
7) Probability to Select in the Neighborhood: δ = 0.9.

3The source codes were developed upon the Java MOEA framework jMetal,
which can be downloaded from http://www.jmetal.sourceforge.net

4The source code of HypE is downloaded from http://www.tik.ee.ethz.ch/
sop/download/supplementary/hype/

VII. EMPIRICAL STUDIES

In this section, the performance of our proposed
MOEA/D-IR is comprehensively studied according to the
experimental design described in Section VI-D. Generally
speaking, the empirical studies can be divided into the fol-
lowing three parts.

1) Sections VII-A and VII-B, respectively, presents the per-
formance comparisons of MOEA/D-IR and the six other
MOEAs on UF, MOP instances.5

2) Section VII-C investigates the underlying rationality of
our proposed selection operator by comparing with two
other variants.

3) Section VII-D empirically studies the effects of different
parameter settings.

A. Performance Comparisons on UF Instances

Tables I and II show the performance comparisons of seven
MOEAs on UF instances, regarding the IGD and HV met-
rics, respectively. Due to the page limit, all the simulation
results described by figures (i.e., plots of the final solu-
tions obtained by each MOEA in the run with the median
IGD value) are presented in the supplemental file of this
paper. Instead of plotting all obtained solutions, we only plot
100 promising ones for UF1 to UF7 and 153 solutions for
UF8 to UF10, according to the method in [30]. Experimental
results clearly demonstrate that MOEA/D-IR is promising in
solving UF instances. It achieves the better mean metric values
in 103 out of 120 comparisons. Wilcoxon’s rank sum tests indi-
cate that 99 of these better results achieved by MOEA/D-IR
are with statistical significance.

To be specific, on UF1, UF2, and UF7, the distribu-
tions of solutions obtained by MOEA/D-IR, MOEA/D-DRA,
MOEA/D-STM, and MOEA/D-FRRMAB are not visually dif-
ferent. Although MOEA/D-M2M is able to approximate the
entire EF, the distribution of solutions is not smooth. The
other two MOEAs can only find some regions of the EF.
For UF3, solutions obtained by MOEA/D-IR do not converge
well to the EF. UF4 is a difficult instance with concave EF in
the objective space. As shown in Fig. 3 of the supplemental
file, none of these MOEAs can find well-converged solutions.
However, solutions obtained by MOEA/D-M2M are smoother
than the other competitors. UF5 and UF6 are with discontin-
uous EFs in the objective space. All these MOEAs are unable
to approximate the entire EF. However, as shown in Fig. 3
of the supplemental file, solutions obtained by MOEA/D-IR
and MOEA/D-STM are better than the other MOEAs in
terms of convergence and diversity. For the three-objective
instance UF8, only the solutions obtained by MOEA/D-IR
and MOEA/D-STM can approximate the entire EF. There
are clear gaps on the nondominated fronts obtained by the
other MOEAs. UF9 is a three-objective instance with two
disconnected EFs. It is clear that the solutions obtained by
MOEA/D-IR and MOEA/D-STM are better than the other
MOEAs in terms of convergence and diversity. UF10 is a mul-
timodal extension of UF8. All these MOEAs have troubles in

5Due to the page limit, the empirical results on WFG instances are presented
in the supplemental file of this paper.
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TABLE I
PERFORMANCE COMPARISONS OF IGD VALUES ON UF TEST INSTANCES

TABLE II
PERFORMANCE COMPARISONS OF HV VALUES ON UF TEST INSTANCES

converging to the true EF. It is worth noting that MOEA/D-IR
and MOEA/D-STM show similar performance on many UF
instance. This can be explained as both of them are developed
upon the high-level framework introduced in Section III. Their
behaviors should share some similarities.

B. Performance Comparisons on MOP Instances

MOP instances, modified from the ZDT [39] and DTLZ [40]
test suites, are recently proposed benchmark problems.
As reported in [16], the state-of-the-art MOEAs, such as
MOEA/D and NSGA-II, have significant difficulties on tack-
ling these instances. The major difficulties of these MOP
instances are their twisted search landscapes in the decision
space, which make the population be easily trapped in some
specific regions. In this case, they pose new challenges to
MOEAs for balancing convergence and diversity during the
search process. In our experiments, all parameters are kept
the same as Section VI-D except Kd = 4 and ϑ = 30.
Tables III and IV compare the performances of all seven
MOEAs on IGD and HV metrics, respectively. Similar to
Section VII-A, we plot the solutions obtained in the run with
the median IGD value of each MOEA for each MOP instance
in the supplemental file. Comparing to the other algorithms,

MOEA/D-IR and MOEA/D-M2M are the most competitive
ones, as they show significantly better performance than the
other competitors on all MOP instances. According to the
Wilcoxon’s rank sum test, 75 out of the 78 better results
obtained by MOEA/D-IR are with statistical significance.

From the plots in Figs. 7–9 of the supplemental file, we find
that only MOEA/D-IR and MOEA/D-M2M can approximate
the entire EF, while the other MOEAs can only approxi-
mate a couple of regions along the EF. For MOP1, MOP3,
and MOP5, the nondominated fronts obtained by MOEA/D-IR
are smoother than those found by MOEA/D-M2M.
MOP2 and MOP3 have the same PF shape, but
MOEA/D-M2M outperforms MOEA/D-IR on MOP2 instance.
MOP4 is a modification of ZDT3 instance, whose EF contains
three disconnected segments. Comparing to MOEA/D-M2M,
solutions obtained by MOEA/D-IR cannot fully converge to
the rightmost segment of the EF. It is also worth noting that
both MOEA/D-IR and MOEA/D-M2M find some dominated
solutions between the leftmost and middle segments of the
EF. For MOP6, a three-objective instance developed from
DTLZ1, solutions obtained by MOEA/D-IR have better
convergence and spread over the EF than the other MOEAs.
As for MOP7, a modification of DTLZ2, MOEA/D-M2M
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TABLE III
PERFORMANCE COMPARISONS OF IGD VALUES ON MOP TEST INSTANCES

TABLE IV
PERFORMANCE COMPARISONS OF HV VALUES ON MOP TEST INSTANCES

outperforms MOEA/D-IR. As shown in Fig. 9 of the supple-
mental file, there are large gaps on the nondominated fronts
obtained by MOEA/D-IR and MOEA/D-M2M.

In contrast to the similar performance of MOEA/D-IR and
MOEA/D-STM on UF instances, MOEA/D-IR performs sig-
nificantly better than MOEA/D-STM on MOP instances. As
discussed in Section IV-E, MOEA/D-STM tries to balance the
convergence and diversity simultaneously, while the selection
mechanism of MOEA/D-IR is a diversity first and conver-
gence second strategy. In this case, MOEA/D-IR gives more
emphasis on the diversity issue in selection. This is an essen-
tial requirement in algorithm design for solving these MOP
instances, which pose significant challenges to the diver-
sity preservation of a search process. As a consequence, the
promising performance achieved by MOEA/D-IR benefit from
this selection mechanism.

C. Performance Comparisons With Other Variants

To further investigate the underlying rationality of our
proposed selection operator, we extend it into other two
variants.

1) Variant-I: Instead of finding the appropriate solution for
each subproblem based on the interrelationship between
subproblems and solutions, this variant matches sub-
problems and solutions in a random manner. Specifically,
for each subproblem, we randomly choose a solution
from the hybrid population of parents and offspring as
the next parent. It is worth noting that a solution is at
most allowed to be chosen one time.

2) Variant-II: For each subproblem, this variant assigns the
solution that owns the best aggregation function value
to it. This is a purely greedy strategy, and different
subproblems can be assigned with the same solution.

Similar to MOEA/D-IR, we instantiate two MOEAs based
on the above two selection operator variants, respectively.
Empirical studies are conducted on all UF, MOP, and WFG
instances. Table V presents the performance comparisons of
IGD and HV metrics.6 From the experimental results, it is
clear that Variant-I is the worst among all these algorithms.
Since solutions are merely selected in a random manner, this
variant makes the algorithm degenerate to a purely random
search, which is obviously not effective for tackling problems
with complicated properties. As for Variant-II, MOEA/D-IR
outperforms it in 30 out of 34 comparisons, where all these
better results are with statistical significance. As discussed
in Section III, an agent has two requirements on its selected
solutions, i.e., convergence and diversity. From the perspec-
tives of subproblems and solutions, the achievements of these
two requirements are respectively treated as their mutual-
preferences. The inferior performance of Variant-II should be
attributed to its purely greedy strategy, in which only the con-
vergence requirement has been explicitly considered, while the
diversity issue has been ignored. This results in a severe loss of
population diversity. In contrast, our proposed selection opera-
tor takes the mutual-preferences of subproblems and solutions

6Due to the page limit, the experimental results on WFG instances are
presented in the supplemental file of this paper.
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TABLE V
PERFORMANCE COMPARISONS OF MOEA/D-IR AND TWO VARIANTS

Fig. 4. Parameter sensitivity studies of Kd and ϑ on UF4, UF8, MOP1, and MOP4 instances.

into consideration. It strikes a balance between convergence
and diversity.

D. Impacts of Parameter Settings

There are two major parameters in the proposed selection
operator.

1) Kd: This parameter determines how many subproblems
are considered to be related with a solution. It con-
trols the trade-off between exploration and exploitation.
A large Kd results in an explorative behavior, while a
small Kd leads to an exploitative behavior.

2) ϑ: This parameter decides the niche size of a sub-
problem. It controls the selection pressure on the local
diversity of the subregion specified by a subproblem.
A large ϑ , which results in a large niche for a sub-
problem, tends to increase the local diversity of the
corresponding subregion. In contrast, a small ϑ , which

leads to a small niche, might decrease the local diversity
of the corresponding subregion.

To study how these two parameters influence the behav-
ior of our proposed selection operator, we have considered
four values for Kd: 1, 2, 4, and 10 and six values for
ϑ : 1, 2, 4, 8, 20, and 30. In total, there are 24 combinations
of Kd and ϑ . In our experiments, all parameters are kept the
same as Section VI-D, except the settings of Kd and ϑ . Twenty
independent runs have been conducted for each combination
of Kd and ϑ on each test instance introduced in Section VI-A.
Considering the page limit, we only present the plots of
the median IGD values found by 24 different combinations
of Kd and ϑ on UF4, UF8, MOP1, and MOP4 instances
in Fig. 4. The complete parameter sensitivity studies on all
26 MOP instances can be found in the supplemental file. From
Fig. 4 and Figs. 11 and 12 of the supplemental file, we find
that different parameter combinations lead to distinct perfor-
mances of MOEA/D-IR. The performance of MOEA/D-IR,
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when both Kd and ϑ are small (e.g., Kd = ϑ = 1), is usu-
ally inferior to the case that Kd is small (e.g., Kd = 1) but
ϑ is large (e.g., ϑ = 30). This is because the behavior of the
selection operator is prone to be exploitative when Kd is small.
On the other hand, a large ϑ setting, which is able to increase
the local diversity and provides some explorative characteris-
tics, exerts a complementary effect to the selection operator.
These observations demonstrate the underlying mechanism of
our proposed selection operator in trading off the convergence
and diversity of the search process.

VIII. CONCLUSION

In MOEA/D, each subproblem is handled by an agent in a
collaborative manner. The selection of MOEA/D can therefore
be regarded as the process of choosing an appropriate solution
by each agent. As an agent has two requirements, i.e., conver-
gence and diversity, on its selected solution, it is judicious to
treat these two requirements explicitly and simultaneously in
designing selection mechanisms. This paper presents a simple
yet effective attempt along this direction. It builds an interrela-
tionship between subproblems and solutions, according to their
mutual-preferences. Based on this interrelationship, each sub-
problem is able to be allocated with its desired solution, which
is thus selected as the parent for the next generation. This
selection operator trades off the mutual-preferences between
subproblems and solutions, thus the convergence and diversity
of the search process. Extensive experimental studies, conduct-
ing on several difficult problems with complicated PS shapes,
demonstrate the effectiveness of our proposed MOEA/D-IR.

As for future directions, we make the following comments.
1) The effectiveness of recombination operators, such as

crossover, usually relies on the selection of mating par-
ents. However, most recombination operators choose
mating parents in a random manner. This random mat-
ing scheme might leads to the inefficiency for offspring
reproduction and premature convergence when tackling
complicated problems. Exploitation versus exploration
dilemma is a major issue in offspring reproduction. It
is interesting to extend our idea in this paper to build
the interrelationship among solutions for mating selec-
tion, which can help to balance the exploration and
exploitation of the search process.

2) Multiobjective optimization is usually used to assist
decision makers (DMs) to find the solutions that fit their
preferences. In this case, the agents might not be inter-
ested in optimizing all the subproblems that spread along
the entire PF. Instead, they might be more interested in
exploiting information around the subproblems that fit
the characteristics of the DMs’ preferences.

3) Many-objective optimization problem has become a
major concern in evolutionary multiobjective optimiza-
tion [20]. It is interesting to investigate the scalability
of our proposed method for complicated problems with
a large number of objectives.

The source codes and supplemental file of this paper can
be obtained via request to the first author or downloaded from
http://www.cs.cityu.edu.hk/~51888309/
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