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Abstract: Data-driven defect prediction has become increasingly important in software engineer-
ing process. Since it is not uncommon that data from a software project is insufficient for training a
reliable defect prediction model, transfer learning that borrows data/konwledge from other projects to
facilitate the model building at the current project, namely cross-project defect prediction (CPDP), is
naturally plausible. Most CPDP techniques involve two major steps, i.e., transfer learning and classi-
fication, each of which has at least one parameter to be tuned to achieve their optimal performance.
This practice fits well with the purpose of automated parameter optimization. However, there is a
lack of thorough understanding about what are the impacts of automated parameter optimization on
various CPDP techniques. In this paper, we present the first empirical study that looks into such
impacts on 62 CPDP techniques, 13 of which are chosen from the existing CPDP literature while the
other 49 ones have not been explored before. We build defect prediction models over 20 real-world
software projects that are of different scales and characteristics. Our findings demonstrate that: (1)
Automated parameter optimization substantially improves the defect prediction performance of 77%
CPDP techniques with a manageable computational cost. Thus more efforts on this aspect are re-
quired in future CPDP studies. (2) Transfer learning is of ultimate importance in CPDP. Given a tight
computational budget, it is more cost-effective to focus on optimizing the parameter configuration of
transfer learning algorithms (3) The research on CPDP is far from mature where it is ‘not difficult’
to find a better alternative by making a combination of existing transfer learning and classification
techniques. This finding provides important insights about the future design of CPDP techniques.

Keywords: Cross-project defect prediction, transfer learning, classification techniques, auto-
mated parameter optimization

1 Introduction

According to the latest Annual Software Fail Watch report from Tricentis1, software defects/failures
affected over 3.7 billion people and caused $1.7 trillion in lost revenue. In practice, stakeholders
usually have limited software quality assurance resources to maintain a software project. Identifying
high defect-prone software modules (e.g., files, classes or functions) by using advanced statistical
and/or machine learning techniques, can be very helpful for software engineers and project managers
to prioritize their actions in the software development life cycle and address those defects.

It is well known that a defect prediction model works well if it is trained with a sufficient amount
of data [1]. However, it is controversial to obtain adequate data (or even having no data at all)
in practice, especially when developing a brand new project or in a small company. By leveraging

∗This manuscript is accepted for publication in ICSE 2020. The copyright of this paper has been permanently
transferred to IEEE.

1https://www.tricentis.com/resources/software-fail-watch-5th-edition/

1



the prevalent transfer learning techniques [2], cross-project defect prediction (CPDP) [3] has become
increasingly popular as an effective way to deal with the shortage of training data [4]. Generally
speaking, its basic idea is to leverage the data from other projects (i.e., source domain projects) to
build the model and apply it to predict the defects in the current one (i.e., target domain project).

Defect prediction models usually come with configurable and adaptable parameters (87% preva-
lent classification techniques are with at least one parameter [5, 6]), the settings of which largely
influence the prediction accuracy when encountering unseen software projects [7, 8]. It is not difficult
to envisage that the optimal settings for those parameters are problem dependent and are unknown
beforehand. Without specific domain expertise, software engineers often train their defect prediction
models with off-the-shelf parameters suggested in their original references. This practice may under-
mine the performance of defect prediction models [1] and be adverse to the research reproducibility of
defect prediction studies [9, 10]. Recently, Tantithamthavorn et al. [5, 6] have empirically shown the
effectiveness and importance of automated parameter optimization for improving the performance and
stability of many prevalent classification techniques for defect prediction with manageable additional
computational cost.

When considering CPDP, defect prediction become more complicated. To transfer knowledge from
the source to the target domain, prevalent transfer learning techniques naturally bring additional
configurable parameters. According to our preliminary literature study, 28 out of 33 most widely
used CPDP techniques (85%) require at least one parameter to setup in the transfer learning (or
as known as domain adaptation) stage. This complication inevitably brings more challenges to the
parameter optimization due to the further explosion of the parameter space, such as the extra difficulty
of finding the optimal configuration and the increased computational cost for evaluating the model
during optimization. Although hyper-parameter optimization (also known as automated machine
learning) has been one of the hottest topics in the machine learning community [11], to the best of
our knowledge, little research have been conducted in the context of transfer learning.

Bearing these considerations in mind, in this paper, we seek to better understand how automated
parameter optimization of transfer learning models can impact the performance in CPDP through a
systematic and empirical study. In doing so, we aim to gain constructive insights based on which one
can further advance this particular research area. To this end, the first research question (RQ) we
wish to answer is:

RQ1: How much benefit of automated parameter optimization can bring to the perfor-
mance of defect prediction models in the context of CPDP?

Answering RQ1 is not straightforward, because transfer learning and classification are two in-
tertwined parts in a CPDP model. Both of them have configurable parameters that can be used to
adapt and control the characteristics of the CPDP model they produce. Therefore, the automated
parameter optimization can be conducted by using three possible types of methods, all of which need
to be studied for RQ1:

• Type-I: Naturally, it makes the most sense to optimize the parameters of both transfer learn-
ing and classification simultaneously. However, due to the large parameter space, it might be
challenging to find the optimal configuration within a limited budget of computational cost.

• Type-II: For the sake of taking the best use of computational cost, alternatively, parameters
optimization may be conducted on one part of a CPDP model, i.e., either the transfer learning
(denoted as Type-II-1) or the classification (denoted as Type-II-2), at a time; while the other
part is trained by using the default parameters. In this way, the parameter space is reduced,
and so does the necessary computational cost. However, this might not necessarily imply an
undermined performance. For example, if transfer learning is the determinant part of a CPDP
model in general, then optimizing it alone is expected to have at least the same level of result as
optimizing both transfer learning and classification together (i.e., Type I) while causing much
less computational cost.

• Type-III: Finally, the automated parameter optimization can also be conducted in a sequen-
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tial manner where the transfer learning part is optimized before the classification model2. In
particular, each part is allocated half of the total budget of computational cost. In this method,
although the total computational cost is exactly the same as that of Type I, the parameter
space is further constrained, which enables more focused search behaviors.

The above also motivates our second RQ, in which we ask:

RQ2: What is the most cost effective type of automated parameter optimization given
a limited amount of computational cost?

Investigating RQ1 and RQ2 would inevitably require us to go through a plethora of transfer
learning and classification techniques proposed in the machine learning literature [2]. During the
process, we found that the transfer learning and classification techniques in existing CPDP models are
either selected in a problem-specific or ad-hoc manner. Little is known about the versatility of their
combinations across various CPDP tasks with different characteristics. Because of such, our final RQ
seeks to understand:

RQ3: Whether the state-of-the-art combinations of transfer learning and classification
techniques can indeed represent the generally optimal settings?

To address the above RQs, we apply Hyperopt [12], an off-the-shelf hyper-parameter optimization
toolkit3, as the fundamental optimizer on the CPDP models considered in our empirical study. Com-
prehensive and empirical study is conducted on 62 combinations of the transfer learning algorithms
and classifiers, leading to a total of 37 different parameters to be tuned, and using 20 datasets from
real-world open source software projects. In a nutshell, our findings answer the RQs as below:

– To RQ1: Automated parameter optimization can substantially improve the CPDP techniques
considered in our empirical study. In particular, 77% of the improvements have been classified
as huge according to the Cohen’s d effect size.

– To RQ2: Transfer learning is the most determinant part in CPDP while optimizing its param-
eters alone can achieve better CPDP performance than the other types of automated parameter
optimization.

– To RQ3: No. Some ‘newly’ developed CPDP techniques, with under-explored combinations
of transfer learning and classification techniques, can achieve better (or at least similar) perfor-
mance than those state-of-the-art CPDP techniques.

Drawing on those answers, our empirical study, for the first time, provides new insights that help
to further advance this field of research4:

• Automated parameter optimization can indeed provide significant improvement to the CPDP
model, within which optimizing the parameters of transfer learning is the most determinant
part. This observation suggests that future research on the optimizer can primarily focus on this
aspect in the design and hence prevent wasting efforts on other methods that provide no better
performance but generating extra computational cost only.

• The state-of-the-art combinations of transfer learning and classifier are far from being optimal,
implying that the selection of combination is at least as important as the parameter tuning. As
a result, future work should target a whole portfolio of optimization, tuning not only the param-
eters, but also the algorithmic components, i.e., the selection of appropriate transfer learning
and classifier pair, of a CPDP model.

2The parameters of a classification model is set as default values when optimizing the transfer learning part.
3http://hyperopt.github.io/hyperopt/
4To enable a reproducible research, all the experimental data and source code of our empirical study can be found at

https://github.com/COLA-Laboratory/icse2020/.
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The rest of this paper is organized as follows. Section 2 provides the methodology used to conduct
our empirical study. Section 3 present and analyze the experimental results. Thereafter, the results and
threats to validity are discussed in Section 4 along with a pragmatic literature review in Section 5. At
the end, Section 6 concludes the findings in this paper and provides some potential future directions.

2 The Empirical Study Methodology

This section elaborates the methodology and experimental setup of our empirical study, including the
dataset selection, the working principle of Hyperopt, the system architecture of automated parameter
optimization for CPDP model building and the performance metric used to evaluate the performance
of a CPDP model.

2.1 Dataset Selection

In our empirical study, we use the following six criteria to select the datasets for CPDP model building.

1. To promote the research reproducibility of our experiments, we choose datasets hosted in public
repositories.

2. To mitigate potential conclusion bias, the datasets are chosen from various corpora and domains.
More importantly, the shortlisted datasets in our empirical study have been widely used and
tested in the CPDP literature.

3. If the dataset has more than one version, only the latest version is used to train a CPDP model.
This is because different versions of the same project share a lot of similarities which simplify
transfer learning tasks.

4. To avoid overfiting a CPDP model, the datasets should have enough instances for model training.

5. To promote the robustness of our experiments, it is better to inspect the datasets to rule out
data that are either repeated or having missing values.

6. To resemble real-world scenarios, it is better to choose datasets from open source projects pro-
vided by iconic companies.

According to the first two criteria and some recent survey papers on the CPDP research [4,13–15],
we shortlist five publicly available datasets (i.e., JURECZKO, NASA, SOFTLAB, AEEEM, ReLink). Note that
these datasets are from different domains and have been frequently used in the literature. To meet
the fourth criterion, we further rule out SOFTLAB while NASA is also not considered in our experiments
due to its relatively poor data quality [16] according to the fifth criterion. In summary, the datasets
used in our experiments consist of 20 open source projects with 10,952 instances. The characteristics
of each dataset are summarized as follows:

– AEEEM [17]: This dataset contains 5 open source projects with 5,371 instances. In particular,
each instance has 61 metrics with two different types, including static and process metrics like
the entropy of code changes and source code chorn.

– ReLink [18]: This dataset consists of 3 open source projects with 649 instances. In particular,
each instance is with 26 static metrics. Note that the defect labels are further manually verified
after being generated from source code management system commit comments.

– JURECZKO [19]: This dataset originally consists of 92 released products collected from open source,
proprietary and academic projects. To meet the first criterion, those proprietary projects are
ruled out from our consideration. To meet the last criterion, the projects merely for academic
use are excluded from JURECZKO. Moreover, since the projects in JURECZKO have been updated
more than one time, according to the third criterion, only the latest version is considered in
our experiments. At the end, we choose 12 open source projects with 4,932 instances in our
empirical study.
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Figure 1: The architecture of automated parameter optimization on CPDP model by using Hyperopt.

2.2 Hyperopt for Automated Parameter Optimization

Hyperopt5 is a Python library that provides algorithms and the software infrastructure to opti-
mize hyperparameters of machine learning algorithms. Hyperopt uses its basic optimization driver
hyperopt.fmin to optimize the parameter configurations of the CPDP techniques considered in our
empirical study. Using Hyperopt requires three steps.

– Define an objective function: As suggested in [20], Hyperopt provides a flexible level of
complexity when specifying an objective function that takes inputs and returns a loss users want
to minimize. In our experiments, the inputs are parameters associated with the transfer learning
and classification techniques as shown in the third column of Table 1 and Table 2 respectively.

– Define a configuration space: The configuration space in the context of Hyperopt describes
the domain over which users want to search. The last column of Table 1 and Table 2 list the
configuration space of the corresponding parameter.

– Choose an optimization algorithm: Hyperopt provides two alternatives, i.e., random search [21]
and Tree-of-Parzen-Estimators (TPE) algorithm [22], to carry out the parameter optimization.
In our experiments, we choose to use the TPE algorithm because the sequential model-based op-
timization has been recognized as one of the most effective hyperparameter optimization methods
in the auto-machine learning literature [23]. In practice, Hyperopt provides a simple interface
to deploy the TPE algorithm where users only need to pass algo=hyperopt.tpe.suggest as a
keyword argument to hyperopt.fmin.

2.3 Architecture for Optimizing CPDP Model

Fig. 1 shows the architecture of using Hyperopt to optimize the performance of CPDP models. As
shown in Fig. 1, the implementation steps of our empirical study are given below.

1. Given a raw dataset with N projects, N − 1 of which are used as the source domain data while
the other project is used as the target domain data. In particular, all source domain data is used
for training whilst the data from the target domain is used for testing. To mitigate a potentially
biased conclusion on the CPDP ability, all 20 projects will be used as target domain data in
turn during our empirical study.

2. The CPDP model building process consists of two intertwined parts, i.e., transfer learning and
defect prediction model building.

5http://hyperopt.github.io/hyperopt/
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• Transfer learning aims to augment data from different domains by selecting relevant in-
stances or assigning appropriate weights to different instances, etc. Table 1 outlines the
parameters of the transfer learning techniques considered in our empirical study.

• Based on the adapted data, many off-the-shelf classification techniques can be applied to
build the defect prediction model. Table 2 outlines the parameters of the classification
techniques considered in this paper.

3. The performance of the defect prediction ability of the CPDP model is at the end evaluated
upon the hold-out set from the target domain data.

Table 1: Parameters of the transfer learning techniques considered in our experiments

Transfer learning
Parameters

Name Description Range

Bruakfilter k The number of neighbors to each point (default=10) [N] [1, 100]

DS
topN The number of closest training sets (default=5) [N] [1, 15]
FSS The ratio of unstable features filtered out (de-

fault=0.2) [R]
[0.1, 0.5]

DSBF
Toprank The number assigned to 1 when performing feature

reduction (default=1) [N]
[1, 10]

k The number of neighbors to each point (default=25) [N] [1, 100]

TCA

kernel The type of kernel (default=‘linear’) [C] {‘primal’, ‘linear’, ‘rbf’, ‘sam’}
dimension The dimension after tranforing (default=5) [N] [5, max(N source, N target)]

lamb Lambda value in equation (default=1) [R] [0.000001, 100]

gamma Kernel bandwidth for ‘rbf’ kernel (default=1) [R] [0.00001, 100]

DBSCANfilter
eps The maximum distance between two samples for one

to be considered as in the neighborhood of the other
(default=1.0) [R]

[0.1, 100]

min samples The number of samples (or total weight) in a neigh-
borhood for a point to be considered as a core point
(default=10) [N]

[1, 100]

Universal
p-value The associated p-value for statistical test (de-

fault=0.05) [R]
[0.01, 0.1]

quantifyType The type of quantifying the difference between distri-
butions (default=‘cliff’) [C]

{‘cliff’, ‘cohen’}

DTB
k The number of neighbors to each point (default=10) [N] [1, 50]

T The maximum number of iterations (default=20) [N] [5, 30]

Peterfilter r The number of points in each cluster (default=10) [N] [1, 100]
[N] An integer value from range
[R] A real value from range
[C] A choice from categories

Note that there are 13 CPDP techniques considered in our empirical study. All of them are either
recognized as the state-of-the-art in the CPDP community or used as the baseline for many other
follow-up CPDP techniques. Table 3 lists the combination of transfer learning and classifier used in
each CPDP technique. To carry out the automated parameter optimization for a CPDP technique,
Hyperopt is allocated 1,000 function evaluations. In our context, one function evaluation represents
the complete model training process of a CPDP technique with a trial parameter setup, which can be
computationally expensive. To carry out statistical analysis over our experiments, the optimization
over each CPDP technique is repeated 10 times.

2.4 Performance Metric

To evaluate the performance of different CPDP methods for identifying defect-prone modules, we
choose the area under the receiver operator characteristic curve (AUC) in our empirical study. This
is because AUC is the most widely used performance metric in the defect prediction literature. In
addition, there are two distinctive characteristics of AUC: 1) different from other prevalent metrics like
precision and recall, the calculation of AUC does not depend on any threshold [4] which is difficult to
tweak in order to carry out an unbiased assessment; and 2) it is not sensitive to imbalanced data which
is not unusual in defect prediction [31]. Note that the larger the AUC values, the better prediction
accuracy of the underlying classification technique is. In particular, the AUC value ranges from 0 to
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Table 2: Parameters of the classification techniques considered in our experiments

Classification techniques
Parameters

Name Description Range
K-Nearest Neighbor (KNN) n neighbors The number of neighbors to each point (default=1)

[N]
[1, 50]

Boost
n estimators The maximum number of estimators (default=50) [N] [10, 1000]
learning rate A factor that shrinks the contribution of each clas-

sifier (default=1) [R]
[0.01, 10]

Classification and Regression Tree (CART)

criterion The maximum number of estimators (default=10) [N] [10, 100]
max features The function to measure the quality of a split (de-

fault=‘gini’) [C]
{‘gini’, ‘entropy’}

splitter The number of features to consider when looking for
the best split (default=‘auto’) [C]

{‘auto’, ‘sqrt’, ‘log2’}

min samples split The minimum number of samples required to split
an internal node (default=2) [N]

[2, N source/10]

Random Forest (RF)

n estimators The maximum number of estimators (default=10) [N] [10, 100]
criterion The function to measure the quality of a split (de-

fault=‘gini’) [C]
{‘gini’, ‘entropy’}

max features The number of features to consider when looking for
the best split (default=‘auto’) [C]

{‘auto’, ‘sqrt’, ‘log2’}

min samples split The minimum number of samples required to split
an internal node (default=2) [N]

[2, N source/10]

Support Vector Machine (SVM)

kernel The type of kernel (default=‘poly’) [C] {‘rbf’, ‘linear’, ‘poly’, ‘sigmoid’}
degree Degree of the polynomial kernel function (de-

fault=3) [N]
[1, 5]

coef0 Independent term in kernel function. It is only sig-
nificant in ‘poly’ and ‘sigmoid’ (default=0.0) [R]

[0, 10]

gamma Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’ (de-
fault=1) [R]

[0.01, 100]

Multi-layer Perceptron (MLP)

active Activation function for the hidden layer (de-
fault=‘relu’) [C]

{‘identity’, ‘logistic’, ‘tanh’, ‘relu’}

alpha L2 penalty (regularization term) parameter (de-
fault=0.0001) [R]

[0.000001, 1]

iter Maximum number of iterations (default=200) [N] [10, 500]

Ridge
alpha Regularization strength (default=1) [R] [0.0001, 1000]

normalize Whether to standardize (default=‘False’) [C] {‘True’, ‘False’}
Naive Bayes (NB) NBType The type of prior distribution (default=‘Gaussian’)

[C]
{‘gaussian’, ‘multinomial’,
‘bernoulli’}

[N] An integer value from range
[R] A real value from range
[C] A choice from categories

Table 3: Overview of existing CPDP techniques considered in our empirical study.

CPDP Techniques Reference CPDP Techniques Reference
Bruakfilter (NB) [24] DS+BF (RF)

[25]
Petersfilter (RF)

[26]
DS+BF (NB)

Petersfilter (NB) DTB [27]
Petersfilter (KNN) DBSCANfilter (RF)

[28]FSS+Bagging (RF)
[29]

DBSCANfilter (NB)
FSS+Bagging (NB) DBSCANfilter (KNN)

UM [30]

The classifier is shown in the brackets while outside part is the transfer learning
technique. UM uses Universal to carry out transfer learning and Naive Bayes as
a classifier. DTB uses DTB to carry out transfer learning part and Naive Bayes
to conduct classification.
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1 where 0 indicates the worst performance, 0.5 corresponds a random guessing performance and 1
represents the best performance.

3 Results and Analysis

In this section, we will present the experimental results of our empirical study and address the research
questions posed in Section 1.

3.1 On the Impacts of Automated Parameter Optimization Over CPDP Tech-
niques

3.1.1 Research Method

To address RQ1, we investigate the magnitude of AUC performance improvement achieved by the
CPDP model optimized by Hyperopt versus the one trained by its default parameter setting. Under
a target domain (project), instead of comparing the difference of vanilla AUC values6 for all repeated
runs, we use Cohen’s d effect size [32] to quantify such magnitude. This is because it is simple to
calculate and has been predominately used as the metric for automated parameter optimization of
defect prediction model [5]. Given two sets of samples say S1 and S2, Cohen’s d effect size aims to
provide a statistical measure of the standardized mean difference between them:

d =
µ1 − µ2

s
, (1)

where µ1 and µ2 is the mean of S1 and S2 respectively; s is as defined as the pooled standard deviation:

s =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(2)

where n1 and n2 is the number of samples in S1 and S2 respectively; while s1 and s2 are the correspond-
ing standard deviations of the two sample sets. To have a conceptual assessment of the magnitude,
according to the suggestions in [33], d < 0.2 is defined as negligible, 0.2 < d ≤ 0.5 is treated as small,
0.5 < d ≤ 0.8 is regarded as medium, 0.8 < d ≤ 1.0 is large while it is huge if d goes beyond 1.0.

As introduced in Section 1, we run four different optimization types (as presented in Section 1)
in parallel upon each baseline CPDP technique. To investigate whether Hyperopt can improve the
performance of a CPDP technique, we only present the results from the best optimization type to make
our conclusion sharper. For each CPDP technique, we use a violin plot to show the distributions of its
median values of Cohen’s d effect size obtained by optimizing the parameters of this CPDP techniques
on 20 projects. To have a better understanding of the effect of automated parameter optimization
upon different CPDP techniques, the violin plots are sorted, from left to right, by the median values
of Cohen’s d effect size in a descending order.

3.1.2 Results

From the comparison results shown in Fig. 2, we clearly see that the performance of 12 out of 13
(around 92%) existing CPDP techniques have been improved after automated parameter optimiza-
tion. In addition, according to the categorization in [33], the magnitudes of most AUC performance
improvements are substantial and important. In particular, ten of them (around 77%) are classified
as huge; while the performance improvements achieved by optimizing the parameters of DS+BF (NB)
belong to the medium scale. In particular, Hyperopt leads to the most significant performance im-
provement on DBSCANfilter (NB) and DTB. On the other hand, the magnitudes of AUC performance
improvement achieved by optimizing the parameters of UM and Bruakfilter (NB) are negligible (i.e.,

6To make our results self-contained, the vanilla AUC values are given in the supplementary document of this paper
and can be found in https://github.com/COLA-Laboratory/icse2020
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Figure 2: The AUC performance improvement in terms of Cohen’s d effect size for each studied CPDP
technique.

Cohen’s d < 0.2). It is worth mentioning that Hyperopt cannot improve the performance of Bru-
akfilter (NB) any further at all considered projects. This might suggest that the original parameter
configuration of Bruakfilter (NB) is already optimal. Overall, we obtain the following findings:

Answer to RQ1: Automated parameter optimization can improve the performance of
defect prediction models in the context of CPDP. In particular, the performance of
10 out of 13 (around 77%) studied CPDP techniques have been improved substantially
(i.e., huge in terms of Cohen’s d effect size value).

3.2 Comparing Different Types of Parameter Optimization

3.2.1 Research Method

To answer RQ2, we investigate the performance of four different types of parameter optimization, as
introduced in Section 1. To have an overview of the result, for each CPDP technique, we record the
best parameter optimization type. In addition, for each optimization type, we also record the number
of times that its AUC value is significantly better than the other peers over all CPDP technique and
project pairs. In addition, to have a better intuition on the effect of different types of parameter
optimization over each CPDP technique, we use violin plots to show the distributions of the median
values of Cohen’s d effect size obtained over 20 projects7.

3.2.2 Results

From the results shown in Fig. 3, we have a general impression that Type-II-1 plays as the best
parameter optimization type in most cases. In particular, for UM and DTB, Type-II-1 almost
dominates the list. The second best parameter optimization type is Type-I whilst the worst one is
Type-III which is rarely ranked as the best optimization type in most cases.

The pie chart shown in Fig. 4 is a more integrated way to summerize the results collected
from Fig. 3. From this figure, we can see that the type of only optimizing the parameters associ-
ated with the transfer learning part in CPDP is indeed more likely to produce the best performance.
In particular, 37.7% of the best AUC performance is achieved by Type-II-1. It is even better than si-
multaneously optimizing the parameters of both transfer learning and classification parts, i.e., Type-I,
which wins on 28.1% comparisons. This might be because given the same amount of computational
budget, simultaneously optimizing the parameters of both transfer learning and classification parts
is very challenging due to the large search space. As a result, Hyperopt might run out of function
evaluations before approaching the optimum on neither part. On the other hand, if Hyperopt only

7Again, to make our results self-contained, the vanilla AUC values are given in the supplementary document of this
paper and can be found in https://github.com/COLA-Laboratory/icse2020
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focuses on optimizing the parameters of the transfer learning part, the search space is significantly
reduced. Therefore, although only part of the parameters is considered, it is more likely to find the
optimal parameter configuration of the transfer learning part within the limited number of function
evaluations. The same applied to Type-II-2, which only focus on optimizing the parameters of the
classification techniques. However, as shown in Fig. 4, the performance of Type-II-2 is not as com-
petitive as Type-I and Type-II-1, implying that the classification part is less important than the
transfer learning part in CPDP, which eventually obscures the benefit brought by the reduced search
space. Finally, we see that sequentially optimizing the transfer learning and classification parts with
equal budget of computation is the worst optimization type (Type-III). This is because it does not
only fail to fully optimize both parts before exhausting the function evaluations, but also ignore the
tentative coupling relationship between the parameters associated with both the transfer learning and
classification.

From the results shown in Fig. 5, we find that the performance difference between different types
of parameter optimization is not very significant in most CPDP techniques. Nonetheless, we can
still observe the superiority of Type-I and Type-II-1 over the other two optimization types in most
performance comparisons. In particular, for DBSCANfilter (NB), DBSCANfilter (KNN) and DTB,
only optimizing the parameters of the classification part does not make any contribution to the per-
formance improvement on the corresponding CPDP techniques. This observation is also aligned with
our previous conclusion that the transfer learning part is more determinant than the classification
part in CPDP. In summary, we find that:
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Figure 5: Violin plots of AUC performance improvement in terms of Cohen’s d effect size for each
studied CPDP technique. 1: Type-I, 2: Type-II-1, 3: Type-II-2, 4: Type-III

Answer to RQ2: Given a limited amount of computational budget, it is more plausible
to focus on the parameter optimization of the transfer learning part in CPDP than the
other types, including optimizing the configurations of both transfer learning and clas-
sification simultaneously. This observation also demonstrates that the transfer learning
part is more determinant in CPDP.

3.3 Comparing Different Combinations of Transfer Learning and Classification
Techniques for CPDP

3.3.1 Research Method

To address RQ3, we build and compare 62 different CPDP models by combining those transfer
learning and classification techniques listed in Table 1 and Table 2 respectively. 13 out of these 62
combinations exist in the literature. The remaining 49 combinations can be regarded as ‘new’ CPDP
techniques. Because DTB requires to update the weights of its training instances during the training
process, it cannot work with KNN or MLP which do not support online training data adjustments.
In other words, the combinations DTB-KNN and DTB-MLP are ruled out from our empirical study.
For a better visualization, instead of presenting the performance of all 62 combinations together, we
only show the 10 best CPDP techniques. We use violin plots to show the distributions of their AUC
values.

In addition, for each project, we compare the performance of the best CPDP technique from the
existing literature and those ‘newly’ developed in this paper. To have a statistically sound conclusion,
we apply the widely used Wilcoxon signed-rank sum test with a 0.05 significance level to validate
the statistical significance of those comparisons. In particular, if the best candidate from the ‘newly’
developed CPDP techniques is significantly better than the best one from the current literature, it is
denoted as win; if their difference is not statistically significant, it is denoted as tie; otherwise, it is
denoted as loss. We keep a record of the number of times of these three scenarios.

3.3.2 Results

From the violin plots shown in Fig. 6, we find that the list of top 10 CPDP techniques varies from
different projects. In particular, DTB-RF is the best CPDP technique as it appears in all top 10 lists
and is ranked as the first place in 9 out of 20 projects. Furthermore, we notice that DTB, Peterfilter
and DBSCANfilter are the best transfer learning techniques for CPDP because they were used as the
transfer learning part in the CPDP techniques of all top 10 lists. From these observations, we conclude
that CPDP techniques also follow the no-free-lunch theorem [34]. In other words, there is no universal
CPDP technique capable of handling all CPDP tasks of the data have different characteristics.

Fig. 7 gives the statistics of the comparison between the best CPDP technique from the existing
literature and the one from our ‘newly’ developed portfolio. From the statistics, we can see that the
CPDP techniques newly developed in this paper, by making a novel combination of transfer learning
and classification techniques, are better than those existing ones in the literature. Remarkably, they
are only outperformed by the existing CPDP techniques under one occasion. From this observation,
we envisage that the current research on CPDP is far from mature. There is no rule-of-thumb a
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Figure 6: Violin plots of AUC values obtained by top 10 CPDP techniques for different projects. In
particular, existing CPDP techniques are with black charts whilst ‘newly’ developed ones are with
white .
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practitioner can follow to design a CPDP technique for the black-box dataset at hand. For RQ3, we
have the following findings:

Answer to RQ3: The current research on CPDP techniques is far from mature. Given
a CPDP task, there is no rule-of-thumb available for a practitioner to follow in order
to 1) design an effective technique that carries out an appropriate transfer learning and
classification; and 2) find out the optimal configurations of their associated parameters.

4 Discussions

4.1 Insights Learned from Our Empirical Study

Our empirical study, for the first time, reveals some important and interesting facts that provide new
insights to further advance the research on CPDP.

Through our comprehensive experiments, we have shown that automated parameter optimization
can significantly improve the defect prediction performance of various CPDP techniques with a huge
effect size in general. In particular, it is surprising but also exciting to realize that optimizing the
parameters of transfer learning part only is generally the most cost effective way of tuning the defect
prediction performance of CPDP techniques. Such a finding offers important insight and guidance for
future research: given a limited amount of computational budget, designing sophisticated optimizer
for the parameters of CPDP techniques can start off by solely considering the transfer learning part,
without compromising the performance.

Our other insightful finding is to reveal the fact that the current research on CPDP is far from
mature. In particular, many state-of-the-art combinations of transfer learning and classification tech-
niques are flawed, and that the best combination can be case dependent. This suggests that automat-
ically finding the optimal combination of CPDP techniques for a case is a vital research direction, and
more importantly, the combination should be tuned with respect to the optimization of parameters.
Such an observation can derive a brand new direction of research, namely the portfolio optimization
of transfer learning and classifier that lead to an automated design of CPDP technique.

4.2 Threats to Validity

Similar to many empirical studies in software engineering, our work is subject to threats to validity.
Specifically, internal threats can be related to the number of function evaluations used in the opti-
mization. Indeed, a larger amount of function evaluations may lead to better results in some cases.
However, the function evaluation in our empirical study is expensive and time consuming, as every
single one needs to go through the full machine learning training process, validation and testing. As a
result, a proper choice should be a good trade-off between the performance and time. To mitigate this
threat, we have run numbers of options in a trial-and-error manner. We then concluded that 1,000
function evaluations is deemed as a balanced choice without compromising the validity of our conclu-
sions. Furthermore, to mitigate bias, we repeated 10 times for each CPDP technique on a project,
which is acceptable considering the cost of function evaluation.

Construct threats can be raised from the selected quality indicator. In this work, AUC has been
chosen as the key performance indicator in our empirical comparisons. The selection is mainly driven
by its simplicity (no extra parameter is required) and its robustness (insensitive to imbalanced data).
In addition, AUC has been widely recognised as one of the most reliable performance indicator in the
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machine learning community [35]. The significance of differences have also been assessed in terms of
the effect size using Cohen’s d.

Finally, external threats are concerned with the dataset and CPDP techniques studied. To mitigate
such, we have studied 62 CPDP techniques, including 13 combinations from existing work on CPDP
and 49 other combinations that are new to the CPDP community but widely applied in classic machine
learning research. Further, as discussed in Section 2.1, our studied dataset covers a wide spectrum of
the real-world defected projects with diverse nature, each of which was selected based on six systematic
criteria. Such a tailored setting, although not exhaustive, is not uncommon in empirical software
engineering and can serve as strong foundation to generalize our findings, especially considering that
an exhaustive study of all possible CPDP techniques and dataset is unrealistic.

5 Related Work

Software defect prediction is one of the most active research areas in software engineering [36–41].
Generally speaking, the purpose of defect prediction is to learn an accurate model (supervised or
unsupervised) from a corpus of data (e.g., static code features, churn data, defect information) and
apply the model to new and unseen data. To this end, the data can be labeled by using code met-
rics [42–45]; process metrics [37,46–48]; or metrics derived from domain knowledge [49,50]. Depending
on the scenario, the training data can come from the same project that one aims to predict the defects
for, i.e., within project defect prediction or from other projects, i.e., CPDP. For supervised learning,
CPDP consists of two parts: domain adaptation and classification where the former is resolved by
transfer learning while the latter is tackled by a machine learning classifier.

In the past two decades, CPDP has attracted an increasing attention, as evidenced by many survey
work [4, 13–15]. In CPDP, the homogeneous CPDP problem, which we focus on this work, refers to
the case where the metrics of the source and target projects are the exactly the same or at least
contain the same ones. Among others, instance selection is the earliest and most common way to
transfer the learned model for CPDP, in which similar source instances to the target instances are
selected to learn a model [24–26, 28, 51]. Alternatively, instance weighting uses different weights for
each source instance, depending on the relevance of the instance to the target instances, see [52], [27]
and [53]. Projects and feature selection is another way to transfer the learned a model when there are
multiple source projects [29, 54], [55–57]. Finally, instance standardization exist for CPDP, in which
the key idea is to transform source and target instance into a similar form (e.g., distribution and
representation) [30, 39]. More comprehensive summaries about techniques for CPDP can be found in
the survey by Zimmermann et al. [58] and He et al. [54].

More recently, studies have shown that CPDP can be improved by using different models [59],
model combination [60] [61] [62] or a model ensemble [63] [64]. Another way to improve prediction
performance is via data preprocessing before applying a CPDP techniques [65] [66] [67], or directly
using an unsupervised learning have, such as the work by Nam and Kim [68].

Despite the tremendous amount of studies on the defect prediction models and approaches to
improve the prediction performance, their parameter optimization has not received enough attentions.
This is in fact non-trivial, as we have shown that more than 80% of the defect prediction models
have at least one configurable and adaptable parameter. However, most work on defect prediction
assumes default settings or relies on ad-hoc methods, which provide little guarantee on the achieved
performance. This is an even more serious issue when considering CPDP, in which case the number of
parameters and the possible configuration options can be enlarged dramatically. Very few studies have
been performed on the automated parameter optimization for defect prediction models. Lessmann et
al. [69] are among the first to conduct automated parameter optimization for defect prediction models
by using grid search. Agrawal et al. [70] preform a more recent study and propose an optimization tool
called DODGE, which eliminates the need to evaluate some redundant combinations of preprocessors
and learners. Nevertheless, unlike our work, these studies neither aim to empirically evaluate the
impact of automated parameter optimization nor focus on CPDP.

The most related work is probably the empirical study from Tantithamthavorn et al. [5], in which
they perform the first thorough study on the impact of automated parameter optimization for defect
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prediction models [6]. However, our work is fundamentally different from theirs in the following
aspects:

• Considering cross-projects: We empirically study the automated parameter optimization for
transfer learning based models on cross-project prediction while Tantithamthavorn et al. [5]
focus on the optimization for the defect prediction model within a single project.

• Studying a larger set of models: The number of combinations of transfer learner and classifier
considered in our experiments constitutes 62 CPDP techniques. This amount is nearly six times
more than the 11 classifiers studied by Tantithamthavorn et al. [5].

• Providing wider insights: Our findings, apart from confirming that the automated parameter
optimization on CPDP is effective, also provides insights on the algorithm selections for CPDP.
In contrast, Tantithamthavorn et al. [5] mainly provide analysis on the effectiveness and stability
of automated parameter optimization.

In summary, our work is, to the best of our knowledge, the first comprehensive empirical study
about the impact of automated parameter optimization on transfer learning for CPDP, based on which
we have revealed important findings and insights that have not been known before.

6 Conclusions

In this paper, we conduct the first empirical study, which offers an in-depth understanding on the
impacts of automated parameter optimization for CPDP based on 62 CPDP techniques across 20
real-world projects. Our results reveal that:

• Automated parameter optimization can significantly improve the CPDP techniques. Up to 77%
of the improvement exhibits huge effect size under the Cohen’s rule.

• Optimizing the parameters of transfer learning techniques plays a more important role in per-
formance improvement in CPDP.

• The state-of-the-arts combinations of transfer learning and classification are far from mature, as
the statistically best technique comes from the 49 ‘newly’ developed combinations in most cases.

Our findings provide valuable insights for the practitioners from this particular research field to con-
sider. Drawing on such, in our future work, we will design sophisticated optimizer for CPDP that
explicitly searches the parameter space for the transfer learning part. Furthermore, the problem of
portfolio optimization for CPDP, which involves both the selection of combination and parameter
tuning, is also one of our ongoing research directions.
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[22] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimization,”
in NIPS’11: Proc. of the 25th Annual Conference on Neural Information Processing Systems,
2011, pp. 2546–2554.

[23] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated Machine Learning -
Methods, Systems, Challenges, 2019, pp. 3–33.

[24] B. Turhan, T. Menzies, A. B. Bener, and J. S. D. Stefano, “On the relative value of cross-company
and within-company data for defect prediction,” Empirical Software Engineering, vol. 14, no. 5,
pp. 540–578, 2009.

[25] S. Amasaki, K. Kawata, and T. Yokogawa, “Improving cross-project defect prediction methods
with data simplification,” in EUROMICRO-SEAA’15: Proc. of the 41st Euromicro Conference
on Software Engineering and Advanced Applications, 2015, pp. 96–103.

[26] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect prediction,” in MSR’13:
Proc. of the 10th Working Conference on Mining Software Repositories, 2013, pp. 409–418.

[27] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction in cross-company software
defects prediction,” Information & Software Technology, vol. 62, pp. 67–77, 2015.

[28] K. Kawata, S. Amasaki, and T. Yokogawa, “Improving relevancy filter methods for cross-project
defect prediction,” in ACIT-CSI’15: Proc. of the 3rd International Conference on Applied Com-
puting and Information Technology/2nd International Conference on Computational Science and
Intelligence, 2015, pp. 2–7.

[29] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-source projects: An empirical
study on defect prediction,” in ESEM’13: Proc. of 2013 ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement, 2013, pp. 45–54.

[30] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a universal defect prediction
model with rank transformed predictors,” Empirical Software Engineering, vol. 21, no. 5, pp.
2107–2145, 2016.

[31] Z. Li, X. Jing, and X. Zhu, “Progress on approaches to software defect prediction,” IET Software,
vol. 12, no. 3, pp. 161–175, 2018.

[32] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Routledge, 1988.

[33] S. Sawilowsky, “New effect size rules of thumb,” Journal of Modern Applied Statistical Methods,
vol. 8, pp. 467–474, 2009.

[34] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans.
Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[35] C. X. Ling, J. Huang, and H. Zhang, “AUC: a statistically consistent and more discriminat-
ing measure than accuracy,” in IJCAI’03: Proc. of the 8th International Joint Conference on
Artificial Intelligence, 2003, pp. 519–526.

[36] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug prediction ap-
proaches,” in MSR’10: Proc. of the 7th International Working Conference on Mining Software
Repositories (Co-located with ICSE), 2010, pp. 31–41.

17



[37] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction metrics for defect prediction,”
in ESEC/FSE: Proc. of the 19th ACM SIGSOFT Symposium on the Foundations of Software
Engineering and the 13th European Software Engineering Conference, 2011, pp. 311–321.

[38] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn defect
predictors,” IEEE Trans. Software Eng., vol. 33, no. 1, pp. 2–13, 2007.

[39] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in ICSE’13: Proc. of the 35th Inter-
national Conference on Software Engineering, 2013, pp. 382–391.

[40] F. Rahman, D. Posnett, A. Hindle, E. T. Barr, and P. T. Devanbu, “Bugcache for inspections: hit
or miss?” in ESEC/FSE’11: Proc. of the 19th ACM SIGSOFT Symposium on the Foundations of
Software Engineering and the 13th European Software Engineering Conference, 2011, pp. 322–331.

[41] T. Zimmermann and N. Nagappan, “Predicting defects using network analysis on dependency
graphs,” in ICSE’08: Proc. of the 30th International Conference on Software Engineering, 2008,
pp. 531–540.

[42] F. Akiyama, “An example of software system debugging,” in IFIP Congress (1), 1971, pp. 353–
359.

[43] T. J. McCabe, “A complexity measure,” IEEE Trans. Software Eng., vol. 2, no. 4, pp. 308–320,
1976.

[44] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” IEEE Trans.
Software Eng., vol. 20, no. 6, pp. 476–493, 1994.

[45] F. B. e Abreu and R. Carapuça, “Candidate metrics for object-oriented software within a taxon-
omy framework,” Journal of Systems and Software, vol. 26, no. 1, pp. 87–96, 1994.

[46] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system defect density,”
in ICSE’05: Proc. of the 27th International Conference on Software Engineering, 2005, pp. 284–
292.

[47] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency of change metrics
and static code attributes for defect prediction,” in ICSE’08: Proc. of the 30th International
Conference on Software Engineering, 2008, pp. 181–190.

[48] A. E. Hassan, “Predicting faults using the complexity of code changes,” in ICSE’09: Proc. of the
31st International Conference on Software Engineering, 2009, pp. 78–88.

[49] A. Meneely, L. Williams, W. Snipes, and J. A. Osborne, “Predicting failures with developer
networks and social network analysis,” in FSE’08: Proc. of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008, pp. 13–23.

[50] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan, “Predicting bugs using an-
tipatterns,” in ICSM’13: Proc. of 2013 IEEE International Conference on Software Maintenance,
2013, pp. 270–279.

[51] D. Ryu, J.-I. Jang, and J. Baik, “A hybrid instance selection using nearest-neighbor for cross-
project defect prediction,” Journal of Computer Science and Technology, vol. 30, pp. 969–980, 09
2015.

[52] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company software defect
prediction,” Information & Software Technology, vol. 54, no. 3, pp. 248–256, 2012.

[53] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a support vector machine for
cross-project defect prediction,” Empirical Software Engineering, vol. 21, no. 1, pp. 43–71, 2016.

18



[54] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on the feasibility of cross-project
defect prediction,” Autom. Softw. Eng., vol. 19, no. 2, pp. 167–199, 2012.
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