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Abstract—This paper proposes a variation operator, called
segment-based search (SBS), to improve the performance of evo-
lutionary algorithms on continuous multiobjective optimization
problems. SBS divides the search space into many small segments
according to the evolutionary information feedback from the
set of current optimal solutions. Two operations, micro-jumping
and macro-jumping, are implemented upon these segments in
order to guide an efficient information exchange among “good”
individuals. Moreover, the running of SBS is adaptive according
to the current evolutionary status. SBS is activated only when the
population evolves slowly, depending on general genetic operators
(e.g., mutation and crossover). A comprehensive set of 36 test
problems is employed for experimental verification. The influence
of two algorithm settings (i.e., the dimensionality and boundary
relaxation strategy) and two probability parameters in SBS (i.e.,
the SBS rate and micro-jumping proportion) are investigated
in detail. Moreover, an empirical comparative study with three
representative variation operators is carried out. Experimental
results show that the incorporation of SBS into the optimization
process can improve the performance of evolutionary algorithms
for multiobjective optimization problems.

Index Terms—Hybrid evolutionary algorithms, multiobjective
optimization, segment-based search, variation operators.

I. Introduction

MANY real-world problems involve simultaneous opti-
mization of several competing criteria or objectives:

Often, there is no single optimal solution, but rather a set of
alternative solutions. Evolutionary algorithms (EAs) have been
recognized to be suitable to deal with these multiobjective
optimization problems (MOPs) due to their population-based
property of achieving an approximation of the Pareto set in
a single run. Since Schaffer’s [44] pioneering work, numer-
ous efficient evolutionary multiobjective optimization (EMO)
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algorithms have been proposed, and some of them are widely
applied to various problem domains [7].

It is well-known that pure EAs may not be well suited for
some complex problems [16]. The hybridization of EAs with
other search techniques (e.g., variation operators, optimiza-
tion algorithms, and machine learning methods) can greatly
improve the search ability [32], [48], [60]. Aiming to obtain
a balance between exploration and exploitation, hybrid EAs
represent one of the growing research areas in the evolutionary
computation community. Recent studies on hybrid EAs have
demonstrated their usefulness on various problem domains
[17], [41], [59].

Incorporating new variation operators into EAs is one
important research topic in the area of hybrid EAs. According
to the property of converging into a local optimum, variation
operators can be divided into two categories: local search (LS)
operators and non-LS operators.

LS, which tries to guide solutions to converge into a local
optimum, is a metaheuristic method. In general, an LS method
starts from a certain point in the search space and moves it
iteratively in a descent direction until a local optimum of the
function is reached [27]. Hybridization of EAs with LS is
known as memetic algorithms (MAs) [5], [28], [49]. Combin-
ing probabilistic search and deterministic search, MAs have
been proven to be successful in solving complex optimization
problems [14], [31], [37], [55].

One important application area of MAs is in the EMO
community [15], [25]. Since the mid-1990s, a number of
multiobjective MAs (MOMAs) have been proposed [11],
[23], [45], [50]. For example, Ishibuchi and Murata [21]
proposed a multiobjective genetic LS approach for flow shop
scheduling, which is the first well-known MOMA. Jaszkiewicz
[22] developed a weighted sum function-based MOMA, and
suggested that scalarizing functions are particularly better at
encouraging diversity than dominance ranking methods. The
memetic-based Pareto archived evolution strategy (M-PAES),
presented by Knowles and Corne [26], is an MOMA based on
grid techniques. Unlike the aforementioned two algorithms, M-
PAES does not use scalarizing functions but rather a Pareto
ranking-based selection. Recently, Bosman [3] presented an
analytical description of the set of all nondominated improving
directions for any point in the decision space of an MOP.
Moreover, he used this description in a gradient-based opti-
mization algorithm.

On the other hand, some interesting extensions of estab-
lished EMO algorithms with respect to the idea of MAs have
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been emerging. These extensions focus on some popular al-
gorithms, such as the nondominated sorting GA II (NSGA-II)
[6], strength Pareto EA 2 (SPEA2) [64], decomposition-based
multiobjective EA (MOEA/D) [63], S metric selection EMO
algorithm (SMS-EMOA) [2], and multiobjective covariance
matrix adaptation evolution strategy (MO-CMA-ES) [20]. By
integrating efficient LS strategies, these extensions greatly
enhance the search ability of algorithms in comparison with
their original versions (see [27], [36], [47], [56], [58]). Among
these, the convergence acceleration operator (CAO) [1] and hill
climber with sidestep (HCS) [30] are two representative local
searchers. The former, based on a neural network technique, is
used to accelerate the convergence speed of EMO algorithms
by mapping the improved vectors of the objective space into
the decision space. The latter utilizes the geometry of the
directional cones of optimization problems and works with
or without the gradient information.

Hybridization of EAs with non-LS operators has also at-
tracted increasing attention over the past few years. Despite
the lack of the property of converging into a local optimum,
these variation operators can clearly enhance the search ability
of an EA when an appropriate combination between them and
original genetic operators (such as crossover and mutation) in
the EA is made. By exploiting specialized knowledge of the
problem being solved, such hybrid EAs have been found to
be promising in dealing with various optimization problems.
Specifically, Tan et al. [51] proposed a two-phase hybrid evo-
lutionary classification technique to extract classification rules
in clinical practice for better understanding and prevention of
unwanted medical events. Fan and Lampinen [12] incorporated
differential evolution with a trigonometric mutation operator.
Due to the capability of obtaining an acceptable solution
with a lower number of objective function evaluations, this
hybrid algorithm can be used in some expensive real-world
problems, e.g., neural networks [12]. In order to address
constrained optimization problems, Wang et al. [57] devel-
oped a hybrid EA which uses the idea of multiobjective
optimization to balance exploration and exploitation during the
evolutionary process. Tizhoosh [53] proposed an opposition-
based learning (OBL) operator for intelligent optimization
algorithms. Incorporated into differential evolution, particle
swarm optimization, and estimation of distribution algorithms,
OBL has been found to be competitive in many fields
[42], [43].

For multiobjective optimization, it is also not uncommon
to apply non-LS operators to improve the performance of
EMO algorithms. Nebro et al. [40] presented a hybrid EMO
algorithm that incorporates traditional mutation and crossover
into the scatter search technique. In order to adapt the dynamic
search of evolutionary operation in multiobjective optimiza-
tion, Tan et al. [52] developed an adaptive variation operator
that exploits the chromosomal structure of binary representa-
tion and synergizes the function of crossover and mutation.
Elhossini et al. [10] hybridized PSO with genetic operators
to solve MOPs. Genetic operators are modified to preserve
the position information required by the PSO algorithm. Chan
et al. proposed a hybrid EMO algorithm which uses the
jumping gene operator to enhance the search ability during the

evolutionary process for both binary-valued and real-valued
scenarios [4], [39].

Overall, the impressive record of hybrid EAs with both
LS and non-LS operators has proven their merits in the
EMO community. Nevertheless, further study on hybrid EMO
algorithms is still greatly needed to deeply explore and exploit
the characteristics of multiobjective optimization. This paper
focuses on the hybridization of EMO algorithms with non-LS
operators and tries to develop a variation operator to improve
the performance of EMO algorithms on continuous MOPs by
utilizing the characteristics of multiobjective optimization.

A conspicuous feature of multiobjective optimizers is to
consider the diversity of solutions in the evolutionary process.
In this regard, performing single solution-based search as in
single-objective optimization may fail if the information of
other solutions is ignored. In fact, the essential characteristic
in multiobjective optimization is that there exists no single
optimal solution but a set of nondominated solutions due to the
conflicting nature of multiple criteria. Therefore, in general,
during the evolutionary process of a population, there is no
solution better than all other solutions for all objectives, i.e.,
a solution may be optimal with respect to some objectives but
not to the others. In this case, a variation strategy based on
the search among “good” solutions may be more beneficial in
multiobjective optimization because their offspring may inherit
distinct strengths from them.

In this paper, we propose a variation operator, called
segment-based search (SBS). SBS divides the search space
into many small segments according to the evolutionary in-
formation feedback from the current optimal solutions (i.e.,
nondominated solutions), and performs information exchange
among “good” individuals, which is called macro-jumping
operation, and the local exploitation of a “good” individ-
ual, which is called micro-jumping operation, inside these
segments. This is done in order to offer, on the one hand,
an extensive probe in the space achieved already by the
current evolutionary population, and on the other hand, a
local refinement in the neighborhood of a single individual.
In addition, the running of SBS is adaptive according to the
evolutionary status of a population. It is activated only when
general genetic operators of an algorithm do not work well,
thus providing a needed fuel to the stagnant population without
hindering the fast-evolving process of the population.

The remainder of the paper is organized as follows. The
proposed operator, including the fundamental mechanisms of
SBS and specific implementation of SBS in an EMO algo-
rithm, is presented in Section II. Section III gives the algorithm
setting, test functions, and performance metrics used for the
experimental study in this paper. The performance validation
of SBS and the comparison with other three operators are
shown in Section IV and Section V, respectively. Finally,
Section VI provides some concluding remarks along with
pertinent observations and discussions for future work.

II. Proposed Method

It is well established that the key design point for the
hybridization of EAs with variation operators lies in the
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Fig. 1. Configuration of segments in a 1-D decision space, where black
points stand for a set P of points, S0, S1, ..., S7 are the segments determined
by P , and |S| denotes the length of a segment. The interval [p − |S|, p + |S|]
corresponds to the micro-jumping range of point p, and the grey point p′ is
an example of a macro-jumping variation of p.

successful promotion of competition and cooperation between
the forces of evolution and variation of individuals. When the
balance between general genetic operators and introduced vari-
ation operators is not appropriately made, the performance of
hybrid EAs is often severely degraded. This balance naturally
involves several important issues, which should be addressed
by the practitioner and are described as follows.

1) What variation operator should be used in an EA for a
particular problem?

2) How often should the newly-introduced variation be
applied (i.e., the frequency of variation operations)?

3) Which individuals should be selected to perform the
variation?

4) When shall the variation be applied?

In the following subsections, we address these issues step-
wise. First, we introduce the basic operation of SBS and then
detail its specific implementation in an EMO algorithm.

A. Segment-Based Search (SBS)

Many existing variation operators act on a single individual
and generate offspring by exploiting its neighborhood. How-
ever, with an MOP, there often exist some individuals that
perform well for different objectives. Therefore, search based
on information exchange among “good” individuals seems to
be beneficial to producing better offspring. Here, we concen-
trate on the whole nondominated solution set in the current
population. To be precise, we consider the region determined
by the boundaries of the nondominated set in each dimension
of the decision space, and divide it into a certain number of
segments. Consequently, the SBS operator, specifically divided
into micro-jumping and macro-jumping operations, will be
implemented on the basis of these segments. Some segment-
related concepts are given as follows.

For the convenience of discussion, we take a D = 1
dimensional decision space as an example. Fig. 1 illustrates
the configuration of segments in it.

First, the minimum and maximum decision values among
a set of points P are found and denoted as min(P) and
max(P), respectively. The length of each segment will then
be determined according to the following formula:

|S| = (max(P) − min(P))/L (1)

where L is an integer value and usually set by the size of the
population. Then, the lower boundary lb and upper boundary
ub of the region are respectively defined as follows:

lb = min(P) − |S| (2)

ub = max(P) + |S|. (3)

Clearly, the region is divided into (L + 2) equal segments.
They are S0, S1, ..., SL, and SL+1. The serial number of the
segment where a point, denoted as p, is located can be
calculated as follows:

sn(p) = �(p − lb)/|S|�. (4)

For example, in Fig. 1, the serial number of p is 2.
Next, we detail the SBS variation, namely, the micro-

jumping and macro-jumping operations, according to the
above preliminary concepts. Micro-jumping is a local refine-
ment scheme that searches in the neighborhood of a solution,
while macro-jumping is an extensive probe which explores
in the whole specified region. Specifically, for a point p, a
micro-jumping operation is to generate a random point in the
range [p − |S|, p + |S|]; while for a macro-jumping operation,
p is transferred to one of the L + 2 segments in a random
manner. That is, an integer i among 0, 1, ..., L, L + 1 is firstly
randomly selected, and then a new point (denoted as p′) is
formed according to the following formula:

p′ = p + (i − sn(p)) × |S|. (5)

Clearly, macro-jumping is a jump to a point chosen at random
from a limited set of points distributed across the whole search
region. For example, in Fig. 1, assuming that i is 5, p will
jump rightwards three segments to p′.

Note that the SBS operator extends the boundaries of the
set of points: the new points generated by SBS have the
opportunity of being located in segment S0 or segment SL+1.
This slight relaxation of the interested region will be beneficial
to enhancing the diversity of individuals in the evolution
search, especially for multiobjective optimization. We will give
an explanation regarding this point in the next section.

B. SBS in Multiobjective Optimization

In hybrid EAs, newly-introduced variation operation in-
evitably competes with traditional genetic operation for limited
computational resources. Given a fixed computational budget,
the frequency of new variation operation will directly affect the
degree of traditional genetic operation. Clearly, more intense
individual variation provides a greater chance of discovering
promising solutions but limits the amount of evolution without
incurring excessive computational resources. Therefore, care
should be taken in setting the frequency of variation operations
to utilize limited computational resources for achieving the
best search performance.

In multiobjective optimization, comparing individuals is
often based on their Pareto dominance relation. Given two
individuals a and b, a is said to dominate b if and only if
a is at least as good as b in all objectives, and better in at
least one objective. Accordingly, individuals in a population
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Fig. 2. Evolutionary trajectory of the convergence metric GD for a typical run of NSGA-II on (a) ZDT1 [65] and (b) WFG1 [19]. The dashed line indicates
the stages where the number of nondominated solutions (denoted as |NS|) in the mixed set R (i.e., the combination of the parent and offspring populations
in each generation) is smaller than or equal to the population size N (|R| = 2N), and the solid line indicates the stages where |NS| is larger than N.

that are not dominated by any other individuals are denoted as
the nondominated individuals with respect to this population.

For a genetic operator, if there exist newly generated in-
dividuals dominating some individuals of their parent popula-
tion, it means that the operator has the capability of improving
the performance of the current evolutionary population. And
if there is no individual in the new population that dominates
any individuals in their parent population, it may mean that the
operator currently fails to provide enough power to drive the
population forwards. Naturally, the number of nondominated
individuals in the mixed set consisting of a population and
its offspring population will largely reflect the evolutionary
status of an EMO algorithm. At the initial stage of evolution,
it is usually easy to produce new individuals by the genetic
operators (such as crossover and mutation operators) that dom-
inate some individuals in their parent population, and thus, the
number of nondominated individuals in the mixed population
is often small. With the progress of evolution, that number will
be gradually increased since there will be more and more non-
dominated individuals in the parent population, and it becomes
harder for new individuals to dominate them. Especially, when
the number of nondominated individuals exceeds a significant
proportion of the mixed population, the convergence may slow
down or even cease. This phenomenon often happens at the
time the population approaches the (local) optimal front. This,
to some extent, indicates that the current population is difficult
to evolve further toward the desired area. Fig. 2 gives two ex-
amples of the relationship between convergence1 and the num-
ber of nondominated individuals in the mixed set consisting of
the parent and offspring populations during the evolutionary
process of a typical run of the NSGA-II algorithm.2

Clearly, when the number of nondominated individuals
exceeds half of the size of the mixed set, the ability to

1The results are evaluated by the generational distance (GD) metric [7]. GD
assesses the convergence of a solution set by calculating the average Euclidean
distance from the set to the Pareto front.

2The parameter settings of the algorithm are the same as in the experimental
study, shown in Table II.

Algorithm 1 EMO Algorithm with SBS

Require: N (population size)
1: Generate an initial population P and create empty temporary sets

R and P ′

2: Create an empty temporary set Q for storing the nondominated
individuals in R, and an empty set T for storing the individuals
generated by SBS

3: while termination criterion not fulfilled do
4: if |Q| > N then
5: T ← SBS variation(Q\P, Q)

/∗ Implement SBS when the size of Q is larger than N ∗/
6: else
7: T ← ∅
8: end if
9: P ′ ← Matingselection variation(P, (N − |T |))

/∗ Implement mating selection and genetic variation to gen-
erate (N − |T |) individuals ∗/

10: P ′ ← P ′ ∪ T
11: R ← P ∪ P ′

12: Q ← Nondominated selection(R)
/∗ Find all nondominated individuals of R ∗/

13: P ← Environmental selection(R)
14: end while
15: return P

evolve forwards will slow down to some extent. This occurs,
for ZDT1 [65], when the population approaches the optimal
front, whereas, for WFG1 [19], when the population might be
trapped into some local optima in view of its relatively large
GD value. In this paper, we introduce SBS at this stage in
order to enhance the exploration ability for the case of being
trapped into local optima (e.g., for WFG1), or to refine the
exploitation result for the case of approaching global optima
(e.g., for ZDT1). The framework of integrating SBS into a
general EMO algorithm is given in Algorithm 1.

In Algorithm 1, Step 4 tests the running condition of SBS. If
the number of nondominated individuals in R is larger than the
population size N, the SBS variation will be activated (Step 5);
otherwise, T becomes empty (Step 7). Step 9 implements the
mating selection and genetic operations (e.g., crossover and
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Fig. 3. Sketch of the integration of SBS, where R denotes the mixed
population to be maintained, Q corresponds to the nondominated individuals
from R, and P stands for the elite individuals picked out from R by the
environmental selection of an EMO algorithm.

mutation) of the original EMO algorithm to generate (N−|T |)
individuals. Therefore, a new population will be composed of
(N − |T |) individuals generated by genetic operators, and |T |
individuals generated by SBS (Step 10). Fig. 3 graphically
demonstrates the process of the case where SBS is activated.

The SBS variation only acts on the set Q\P3 (i.e., the
nondominated individuals that have been eliminated by the
environmental selection) rather than either P (i.e., the elite
individuals) or R\Q (i.e., the dominated individuals). There
are |Q\P | individuals to be generated, but not all of them will
be preserved. A new individual will enter the next population
only if it is not dominated by its parent. Therefore, the number
of evaluations per generation becomes higher when SBS is
implemented (i.e., |Q\P | − |T | evaluations are added per
generation).

Several strengths of applying SBS to the set Q\P are drawn
as follows.

1) Individuals from the set Q\P perform well in terms
of convergence and there are no individuals dominating
them in the set R. Applying SBS on them has a greater
chance to generate better offspring in comparison with
applying SBS on the dominated individuals in R\Q.

2) Although being nondominated solutions in R, individ-
uals from Q\P are not used as parents to generate
offspring. Moreover, in contrast to the probable long
time existence of the elite individuals in P during the
evolutionary process, solutions in Q\P will not exist in
the next generation population. Therefore, applying SBS
on them means to give them a chance to contribute their
value, which may be beneficial to exploring the potential
of every nondominated individual in R.

3) The number of individuals in Q\P varies adaptively
according to the evolutionary situation. On the one hand,
when the size of the nondominated set Q is relatively
small, the evolutionary population appears to still have
some potential to be exploited and thus the impact of
SBS is relatively weak. On the other hand, when the size
becomes larger, the population in general evolves more
slowly and the impact of SBS increases correspondingly.

Up to now, the four issues with respect to the design of
a hybrid EA mentioned at the beginning of this section have

3Note that the segments in the variation are defined using Q; see Step 3 in
Algorithm 2.

been addressed: 1) a segment-based variation operator is used;
2) it is activated when the number of nondominated individuals
exceeds half of the size of the mixed set consisting of the
parent and offspring populations; 3) it acts on nondominated
individuals that are eliminated by the environmental selection;
and 4) it occurs before mating selection and genetic operations
but after the environmental selection process. Algorithm 2
gives the pseudocode of the implementation of SBS.

The main procedure of SBS can be divided into two parts.
The first part, consisting of Steps 2–5, makes preparations
for the SBS variation, including setting up the environment
of segments (i.e., the length of a segment and the lower and
upper boundaries) in each dimension of the decision space and
selecting individuals for variation. The second part, consisting
of Steps 6–29, details the implementation process of SBS. In
this part, there are two user-defined probability parameters,
MiP and SR. MiP denotes a proportion of micro-jumping
versus macro-jumping, and SR denotes a rate of the SBS
variation. Additionally, parameter jrand is a random integer
to ensure that at least one element is selected to vary in each
interested individual. Steps 26–28 are used to determine the
survival of new individuals. A new individual will be saved
only if it does not perform worse than its parent, i.e., it is not
dominated by its parent.

Finally, it is worthwhile to mention that the range of the
concerned region in SBS always changes in the evolutionary
process since it is determined by the current population. This,
similar to the OBL operator developed in [43] and [53], will
help to shrink the search space and employ existing knowledge
of evolution. Nevertheless, a key difference from the OBL
variation is the slight relaxation of the boundaries of the
solution set in SBS. This will be more useful to enhance
the diversity of the population in multiobjective optimization
because the optimal result of an MOP is a region, rather than
a solitary point, in contrast to a single-objective optimization
problem. An experimental study of this relaxation strategy will
be given in Section IV-C.

III. Experimental Design

In order to verify SBS, we integrate it into three widely used
EMO algorithms, NSGA-II [6], SPEA2 [64], and SMS-EMOA
[2]. NSGA-II is one of the most popular EMO algorithms.
The main characteristic is its fast nondominated sorting and
crowding distance-based density estimation. SPEA2 is also a
prevalent EMO algorithm, which borrows a so-called fitness
strength value and the k-th nearest neighbor density estimation
to select individuals into the next population. SMS-EMOA
is an indicator-based EMO algorithm, which maximizes the
hypervolume contribution of a population during the evolu-
tionary process. Combined with the concept of nondominated
sorting, SMS-EMOA can produce a well-converged and well-
distributed solution set.

Note that the original SMS-EMOA adopts a steady-state
evolution model, which creates only one new member and
then tests whether it can enter the archive or not at each step
of the algorithm. Here, to make SMS-EMOA suitable in the
framework of SBS, we modify the original SMS-EMOA and
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Algorithm 2 SBS variation(Q\P, Q)
Require: N (population size), D (problem dimension in the decision

space), SR (SBS rate), MiP (micro-jumping proportion), MiM
(micro-jumping mark), MaN (macro-jumping number), jrand
(random parameter to ensure variation)

1: Create an empty temporary set U and an empty set T for storing
the individuals generated by SBS

2: for all dimension j in the decision space, j = 1, ..., D do
3: Set segment(Q, j, N)

/∗ Set the environment of segments in dimension j according
to Eqs. (1), (2), and (3), including the length of a segment,
the lower and upper boundaries, denoted as |S|j , lbj and ubj ,
respectively ∗/

4: end for
5: U ← Q \ P

/∗ Act on the nondominated individuals which have been elim-
inated ∗/

6: for all pi ∈ U, i = 1, ..., |U| do
7: if rand(0, 1) < MiP

/∗ Determine whether micro-jumping or macro-jumping ∗/
then

8: MiM ← 1
9: else

10: MiM ← 0
11: MaN ← �rand[0, 1) × (N + 2)�

/∗ Select a random integer among {0, 1, ..., N, N + 1} for
the macro-jumping variation ∗/

12: end if
13: jrand ← �rand[0, 1) × D� + 1

/∗ Select a random integer among {1, 2, ..., D} ∗/
14: for all dimension j of pi, j = 1, ..., D do
15: if rand(0, 1) < SR ∨ j = jrand then
16: if MiM = 1 then
17: p′

ij ← rand[pij − |S|j, pij + |S|j]
/∗ Implement the micro-jumping variation ∗/

18: else
19: p′

ij ← pij + (MaN − Snj(pij)) × |S|j
/∗ Implement the macro-jumping variation ∗/

20: end if
21: else
22: p′

ij ← pij

23: end if
24: end for
25: eval(p′

i) /∗ Evaluate new individual ∗/
26: if ¬(pi ≺ p′

i)
/∗ Compare the new individual with its parent ∗/
then

27: T ← T ∪ {p′
i}

28: end if
29: end for
30: return T

adopt a generational evolution version of the algorithm, which,
like NSGA-II and SPEA2, creates a set of new solutions
and tests whether they can enter the next population or not
at each step of the algorithm [8]. In addition, since the
original implementation of SPEA2 and SMS-EMOA does
not contain any constraint handling mechanism, we modified
their implementation by applying the same constraint handling
mechanism used in NSGA-II.

In the following subsections, we introduce the test problems,
performance metrics, and parameter setting for the compara-
tive study.

A. Test Problems

A comprehensive set of 36 MOPs are used for performance
verification of the proposed method. These test problems have

been commonly used in the literature. They can be divided
into several groups according to the number of objectives and
constraint conditions.

For the first group of bi-objective unconstrained problems,
we first choose problems from Veldhuizen’s studies [54],
including Schaffer, Fonseca1, Fonseca2, Kursawe, and Poloni
problems. Then, the ZDT problem family (including ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6) [65] is considered. Finally,
the walking fish group (WFG) problem family (WFG1 to
WFG9) [19] based on variable linkage is also contained in
this group. The second group consists of the bi-objective
constrained problems from [7], including BEL, BINH, OSY2,
TNK, SRIN, and Constr Ex. For the third group, we select
MOPs with three objectives. First, four Viennet problems [54]
(VNT1, VNT2, VNT3, and VNT4) are chosen, of which the
first three problems have three objectives and no constraints,
and the fourth one has three objectives and three constraints.
Then, the unconstrained DTLZ problem family [9] (DTLZ1
to DTLZ7) is considered.

B. Performance Metrics

To compare the algorithms, we use two performance met-
rics, i.e., inverted generational distance (IGD) [63] and Hy-
pervolume (HV) [7], which are commonly used in the EMO
community [34], [35]. In addition, median attainment surfaces
[13] are provided for visual inspection of the performance of
algorithms on some test problems. IGD measures the average
distance from the points in the Pareto front to their closest
solution in the obtained set. Mathematically, let P∗ be a
reference set representing the Pareto front, then the IGD value
from P∗ to the obtained solution set P is defined as follows:

IGD =
∑

z∈P∗
d(z, P)/|P∗| (6)

where |P∗| denotes the size of P∗ (i.e., the number of points
in P∗) and d(z, P) is the minimum Euclidean distance from
point z to P . A low IGD value is preferable, which indicates
that the obtained solution set is close to the Pareto front as
well as having a good distribution.

The HV metric calculates the volume of the objective space
enclosed by the obtained solution set and a reference point. A
large value is preferable. It can be described as the Lebesgue
measure � of the union hypercubes hi defined by a solution
pi in the set and the reference point xref as follows:

HV = �({
⋃

i

hi | pi ∈ P}) = �(
⋃

pi∈P

{x | pi ≺ x ≺ xref }). (7)

Note that, in the calculation of HV, the solutions that do not
dominate the reference point are discarded (i.e., the solutions
that are worse than the reference point in at least one objective
will contribute zero to HV).

Plotting median attainment surfaces of EMO algorithms’
results (i.e., the final solutions) is a good performance com-
parison method, which allows visual inspection of the perfor-
mance of algorithms regarding convergence and diversity [13].
For one run of an algorithm, the attainment surface of its
results divides the objective space into two regions: one
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containing solutions that are dominated by its results, and
another containing solutions that dominate its results. For
multiple runs of an algorithm, the median attainment surface
is the surface that the algorithm’s results are expected to attain
in 50% of the runs. Here, we use Knowles’s approach to plot
the median attainment surface [24]. The code is available at
http://www.cs.man.ac.uk/∼jknowles/plot attainments/.

C. General Experimental Setting

The parameter settings for all conducted experiments are
given as follows unless explicitly mentioned otherwise.

1) Parameter setting in SBS: In the SBS operator, both
SR and MiP (i.e., the SBS rate and micro-jumping
proportion) are set to 0.5 for the comparative study. The
effect of these two parameters on the performance of
SBS will be investigated in detail in Section IV-D.

2) Parameter setting of genetic operators in the tested
algorithms: In NSGA-II, SPEA2, and SMS-EMOA,
two widely-used crossover and mutation operators, i.e.,
the simulated binary crossover (SBX) and polynomial
mutation [7], are chosen. Following the practice in [6],
the distribution indexes in both the SBX and polynomial
mutation are set to 20. A crossover probability pc = 1.0
and a mutation probability pm = 1/D (where D is the
number of decision variables) are used according to [7].

3) Population and archive size: Like most of the studies
of EMO algorithms, the population size is set to 100,
and the archive set, if used, is maintained with the same
size as the population size.

4) Number of decision variables in scalable problems:
ZDT, DTLZ, and WFG are three suites of test problems,
whose dimensionality D can be specified by the user.
The default dimensionality Ddefault is set to 30 for the
first three ZDT problems, to 10 for ZDT4 and ZDT6,
and to 12 for all the DTLZ problems except DTLZ1 and
DTLZ7, whose Ddefault is set to 7 and 22, respectively.
For the WFG suite, Ddefault is set to 6.

5) Number of runs and stopping condition: We indepen-
dently run each algorithm 30 times for each test problem.
The termination criterion of an algorithm is a predefined
number of evaluations. Here, we set the number of eval-
uations to different values for problems with different
numbers of objectives, since the difficulty of problems
generally increases with the number of objectives [46].
The number of evaluations is set to 25 000 and 30 000
for bi-objective and tri-objective problems, respectively.

6) Reference point setting in HV: Similar to [29], we
select the integer point slightly larger than the worst
value of each objective on the Pareto front of a problem
as its reference point, as given in Table I.

7) Substitution of the Pareto front for IGD: For the IGD
metric, it is necessary to know the Pareto front of test
problems. In most of the test problems used in this paper,
including families ZDT, DTLZ, and WFG, their Pareto
fronts are known. For them, we select 10 000 evenly-
distributed points along the Pareto front as its substitu-
tion in the calculation of IGD. For other test problems,

TABLE I

Setting of the Reference Point in HV for All the Test Problems

TABLE II

Parameter Settings in Comparative Experiments

the substitution of their Pareto fronts is available from
the web site http://www.cs.cinvestav.mx/∼emoobook/.

The parameter settings are summarized in Table II.

D. Experimental Classification

In order to carry out a reliable and comprehensive compar-
ison, we categorize the experiments into five groups:

1) performance verification of SBS;
2) effect of the problem dimensionality;
3) effect of the boundary relaxation strategy;
4) setting of newly added control parameters;
5) comparison of SBS with OBL [43], [53], jumping gene

[4], [39], and Mühlenbein’s mutation [38].

Unless mentioned otherwise, the same parameter settings
as described in the previous subsection are adopted in each
experiment.

IV. Performance Verification of SBS

In this section, we investigate the performance of the
proposed SBS operator following the experimental design
outlined in the previous section. We embed SBS into NSGA-
II, SPEA2, and SMS-EMOA, and call them NSGA-II+SBS,
SPEA2+SBS, and SMS-EMOA+SBS, respectively. The values
included in the tables of results are mean and standard
deviation (SD) over 30 independent runs, and a better mean is
highlighted in boldface. In addition, a t-test is used to compare
tested algorithms on each function. The symbol “†” indicates
that the p value of 58 degrees of freedom is significant at a
0.05 level of significance by a two-tailed t-test.

A. Performance Verification of SBS

First, we compare NSGA-II+SBS with the original
NSGA-II. The results of 36 benchmark functions regarding
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TABLE III

IGD Comparison (Mean and SD) of NSGA-II and NSGA-II+SBS, Where a Better Mean for Each Case is Highlighted in Boldface

TABLE IV

HV Comparison (Mean and SD) of NSGA-II and NSGA-II+SBS, Where a Better Mean for Each Case is Highlighted in Boldface

the IGD and HV metrics are given in Tables III and IV,
respectively. Clearly, NSGA-II+SBS performs significantly
better than NSGA-II regarding both metrics. NSGA-II+SBS
obtains better values in 26 and 25 out of the 36 test problems
regarding IGD and HV, respectively. Also, for the majority of
the problems on which NSGA-II+SBS outperforms NSGA-
II, the results have statistical significance (16 out of the 26
problems for IGD and 19 out of the 25 problems for HV).
Note that the degree of performance improvement brought
by SBS is considerable on some problems where NSGA-II
fails to converge, such as WFG1 and DTLZ6. For these test
cases, NSGA-II+SBS can greatly enhance the search ability,
successfully guiding the solutions to approximate the Pareto
front of the problem. This occurrence may be attributed to
the macro-jumping operation in SBS that can produce some
promising individuals to help the current stagnant population.
Fig. 4 plots the 50% attainment surfaces [24] across the 30
runs of NSGA-II and NSGA-II+SBS on DTLZ6. It is clear
that NSGA-II+SBS performs better than NSGA-II since the
median attainment surface of NSGA-II+SBS has a larger
dominated space than that of NSGA-II.

In order to investigate the “success rate” of the SBS operator
during the evolutionary process, we also show, as a function
of the number of evaluations, the probability that a solution
generated by SBS has been inserted into the population across
the 30 runs of NSGA-II+SBS on DTLZ6 in Fig. 5. Clearly,
despite fluctuating, the probability value exceeds 30% most of
the time. This means that SBS is an efficient operator to gen-

Fig. 4. 50% attainment surfaces across the 30 runs of NSGA-II and NSGA-
II+SBS on DTLZ6. (a) NSGA-II. (b) NSGA-II+SBS.

erate “good” solutions (i.e., solutions that are not dominated
by their parent) during the evolutionary process.

To better understand the performance difference between
NSGA-II and NSGA-II+SBS, we show the average HV result
with standard errors during the whole evolutionary process
across all 30 runs of the two algorithms on DTLZ6 and
WFG1 in Figs. 6 and 7, respectively. As can be seen from
the figures, an evident improvement of the HV value can
be achieved when SBS is embedded into NSGA-II. For
DTLZ6, the HV trajectory of NSGA-II+SBS increases rapidly
from about 6 000 evaluations and approximates the optimal
value (around 6.10) at about 23 000 evaluations. For WFG1,
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Fig. 5. Probability that a solution generated by SBS has been inserted
into the population during the evolutionary process across the 30 runs of
NSGA-II+SBS on DTLZ6 (denoted by dashed line). Black square denotes
the average number of solutions generated by SBS, and hollow circle denotes
the average number of solutions inserted into the population.

Fig. 6. Evolutionary trajectories of HV obtained by NSGA-II and
NSGA-II+SBS on DTLZ6.

NSGA-II+SBS shows a clear advantage over NSGA-II from
around 7 000 evaluations until the end.

Tables V and VI show the comparative results of SPEA2
and SPEA2+SBS. Similar to the case of NSGA-II+SBS,
SPEA2+SBS has a clear advantage over the original SPEA2.
It obtains a better value in 26 and 25 out of all 36 test
problems in terms of IGD and HV, respectively. Also, the
difference of the two algorithms on most of the problems has
statistical significance. Specifically, the proportion of the prob-
lems where SPEA2+SBS outperforms SPEA2 with statistical
significance is 16/26 and 18/25 instances regarding IGD and
HV, respectively. Additionally, the performance improvement
is noticeable for some cases, for example, WFG5 and WFG6.
Fig. 8 plots the 50% attainment surfaces across the 30 runs
of SPEA2 and SPEA2+SBS on WFG6. Clearly, the median
attainment surface of SPEA2+SBS has a larger dominated
space than that of SPEA2. In fact, the median attainment
surface of SPEA2+SBS already approximates the Pareto front
of the problem, which means that the final solutions obtained
by SPEA2+SBS can statistically achieve a good balance
between convergence and diversity.

Fig. 7. Evolutionary trajectories of HV obtained by NSGA-II and
NSGA-II+SBS on WFG1.

Fig. 8. 50% attainment surfaces over 30 runs of SPEA2 and SPEA2+SBS
on WFG6.

Tables VII and VIII show the comparative results between
SMS-EMOA and SMS-EMOA+SBS. Although the advantage
of SMS-EMOA+SBS over SMS-EMOA seems to be not
as clear as that of NSGA-II+SBS over NSGA-II and of
SPEA2+SBS over SPEA2, the proposed operator can improve
SMS-EMOA for the majority of the problems. Specifically,
SMS-EMOA+SBS outperforms SMS-EMOA in 21 and 22 out
of the 36 test problems regarding IGD and HV, respectively.
Also, for most of the problems on which SMS-EMOA+SBS
performs better, the results have statistical significance (16 out
of the 21 problems for IGD and 17 out of the 22 problems for
HV). In contrast, the number of problems where SMS-EMOA
outperforms SMS-EMOA+SBS with statistical significance is
eight and nine in terms of IGD and HV, respectively.

It is important to note that the influence of SBS is different
for different kinds of test problems. Integrated by the proposed
operator, NSGA-II and SPEA2 achieve a clear improvement
for most of the ZDT and DTLZ problems. For the WFG
family, the proposed operator works well on some problems
where the algorithm fails to approach the Pareto front, such
as WFG1, WFG5, and WFG6, but performs poorly on some
relatively easy problems, such as WFG3 and WFG4.
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TABLE V

IGD Comparison (Mean and SD) of SPEA2 and SPEA2+SBS. A Better Mean for Each Case is Highlighted in Boldface

TABLE VI

HV Comparison (Mean and SD) of SPEA2 and SPEA2+SBS. A Better Mean for Each Case is Highlighted in Boldface

TABLE VII

IGD Comparison (Mean and SD) of SMS-EMOA and SMS-EMOA+SBS. A Better Mean for Each Case is Highlighted in Boldface

The UF and CF family [62] is also a set of popular test
problems, which emphasize the complexity of the shape of
the Pareto set. In some preliminary experiments, we observed
that for the UF and CF problem family, the performance of the
tested algorithms (i.e., NSGA-II, SPEA2, and SMS-EMOA)
has not a clear improvement when integrated with the proposed
SBS operator. This may mean that SBS is not well suited for
MOPs with the Pareto set having such complex shape in the
decision space.

Result summary—From the three groups of experiments
on 36 benchmark functions, the algorithms with the integration
of the SBS operator show a clear improvement. For most of
the test problems, a better balance between convergence and
diversity can be achieved when SBS is integrated into the
algorithms.

B. Effect of Dimensionality
The experimental results in the previous section have shown

that the SBS operator can improve the performance of EMO
algorithms. Next, we study the influence of parameter setting
on the performance of algorithms. Due to space limitation,
we only consider the implementation of SBS into NSGA-II
and present the HV results of NSGA-II and NSGA-II+SBS
in this and the following sections. Similar results can also be
observed for the other algorithms.

This section investigates the effect of problem dimensional-
ity (i.e., the number of decision variables) on the performance
of NSGA-II+SBS. The same experiments are repeated for
D = 2Ddefault on each scalable function from our test set. All
other control parameters are kept unchanged. Table IX gives
the results on all 21 scalable functions. Note that for some
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TABLE VIII

HV Comparison (Mean and SD) of SMS-EMOA and SMS-EMOA+SBS. A Better Mean for Each Case is Highlighted in Boldface

TABLE IX

HV Comparison (Mean and SD) of NSGA-II and NSGA-II+SBS (D = 2Ddefault ), Where a Better Mean for

Each Case is Highlighted in Boldface

TABLE X

HV Comparison (Mean and SD) of NSGA-II and NSGA-II+SBS (D = 100), Where a Better Mean for

Each Case is Highlighted in Boldface

problems, the HV value of the obtained solution set may be
equal to zero, which means that no solutions in the set can
converge into the area determined by the reference point. In
the case, the assessment result fails to indicate the performance
difference between algorithms. To solve this issue, we reset
the reference point for these problems (marked by ∗ in the
table) by specifying the integer point slightly larger than the
extreme value of each objective of a mixed set that consists of
the final solutions obtained by all algorithms across all runs
on a particular problem.

As can be seen from the table, NSGA-II+SBS outperforms
NSGA-II in 16 out of the 21 problems, yet the latter obtains
a better value only on five problems. Also, the difference
on most of the test problems where NSGA-II+SBS performs
better than NSGA-II has statistical significance (12 out of the
16 problems), whereas only for WFG4 and DTLZ5, NSGA-II
outperforms NSGA-II+SBS with statistical significance. On
the other hand, it is clear that as the number of decision
variables increases, both algorithms perform worse on all

functions except on WFG8, where, interestingly, higher di-
mensionality seems to be more suitable. In addition, by a
comparative observation in Tables IV and IX, it can be found
that the advantage of NSGA-II over NSGA-II+SBS varies
with the increase of problem dimensionality on some test
problems. For problems WFG3 and DTLZ7 where NSGA-II
outperforms NSGA-II+SBS under the default settings, NSGA-
II+SBS achieves a better result when D = 2Ddefault .

In real-world scenarios, it is not uncommon to face a
problem with hundreds of decision variables. To verify the
efficiency of SBS for the problems with a high dimensionality,
we compare the performance between the two algorithms
on all problems with dimensions 100 and 1 000, as shown
in Tables X and XI, respectively. Interestingly, from the ta-
bles the advantage of NSGA-II+SBS over NSGA-II becomes
clearer when a high number of decision variables are involved.
For both D = 100 and D = 1000, NSGA-II+SBS performs
better than NSGA-II in 18 out of the 21 problems. Also, for
most of the problems on which NSGA-II+SBS outperforms its
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TABLE XI

HV Comparison (Mean and SD) of NSGA-II and NSGA-II+SBS (D = 1000), Where a Better Mean for

Each Case is Highlighted in Boldface

TABLE XII

Effect of BRS. For Each Problem, the Left HV Value (Mean and SD) is Obtained by NSGA-II+SBS Without BRS, and the Right One

by NSGA-II+SBS with BRS (i.e., the Original NSGA-II+SBS). A Better Mean for Each Case is Highlighted in Boldface

competitor, the results have statistical significance (14 out of
the 18 problems when D = 100 and 15 out of the 18 problems
when D = 1000).

In addition, the investigation of problem dimensionality
in the objective space is also an important issue, which we
leave for future study. In this context, we plan to apply
SBS to some recent evolutionary many-objective optimization
algorithms, such as GrEA [61] and SPEA2+SDE [33], and
test the performance of the proposed operator in a high-
dimensional objective space.

Result summary—While the algorithm integrated with
the SBS operator obtains a lower HV value on most of
the scalable functions with the increase of dimensionality,
it still maintains stable advantage over its original version.
Moreover, the advantage becomes clearer when the problem
dimensionality increases, with NSGA-II+SBS outperforming
NSGA-II on around 85% of all the problems when D = 100
and D = 1000.

C. Effect of the Boundary Relaxation Strategy

In this section, we investigate the effect of the boundary
relaxation strategy (BRS) in SBS by: 1) implementing SBS
without BRS, and 2) expanding the boundary in BRS. For
this purpose, all parts of the proposed SBS operator are kept
untouched except that the boundary is adjusted.

First, considering the SBS without BRS, Eqs. (2) and (3)
will be changed into lb = min(P) and ub = max(P),
respectively, and there will be L, instead of (L + 2), segments
to be considered in each dimension (L is set to N, i.e., the
population size).

Table XII gives the HV values of NSGA-II+SBS without
BRS on all the 36 test problems, and the results of NSGA-
II+SBS from Table IV are also repeated in this table to ease
the comparison between them. Clearly, the algorithm without
BRS performs significantly worse than the original NSGA-
II+SBS. The former outperforms the latter in ten out of the
36 problems, and with statistical significance for only one
problem (TNK). On the other hand, NSGA-II+SBS with BRS
achieves a better HV value in 25 out of the 36 problems,
and with statistical significance for more than half of these
problems (15 of the 25 problems). In addition, on the problem
FON1, both algorithms have an equal result regarding the
mean and SD values.

Next, we test the effect of the boundary relaxation degree
in SBS to the algorithm’s performance. Specifically, the upper
and low boundaries are expanded to lb = min(P) − k|S|
and ub = max(P) + k|S|, respectively, where k is set to
2, 3, 5, and 10. Therefore, there are L + 2k segments to
be considered in each dimension. Interestingly, we observe
that the effect of the boundary relaxation degree is different
for different problems. Here, we demonstrate the results of
NSGA-II+SBS on three WFG test problems, WFG1, WFG2,
and WFG8. Fig. 9 plots the HV curve of the algorithm with
different degrees of boundary relaxation in SBS. Clearly, the
optimal setting of k is varying, with k = 5, k = 10, and
k = 1 for WFG1, WFG2 and WFG8, respectively. This means
that a good tradeoff between extensive exploration and local
exploitation is distinct for different problems.

Result summary—After eliminating the BRS in SBS, the
HV value of the algorithm drops on 25 problems, and has
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Fig. 9. HV comparison of NSGA-II+SBS with different degrees of boundary
relaxation in SBS on WFG1, WFG2, and WFG8. The HV value of WFG2 and
WFG8 is modified by adding or subtracting a constant in order to integrate
them into one figure clearly (i.e., HVWFG2 = HVWFG2 − 1.6 and HVWFG8 =
HVWFG8 + 1.9).

a slight improvement on only ten problems. This clearly
demonstrates that BRS is useful to enhance the search ability
in multiobjective optimization. However, the optimal setting
of the boundary relaxation degree is varying for different
problems. Adaptive setting according to the evolutionary in-
formation may be a promising direction in the future study.

D. Effects of the SBS Rate (SR) and Micro-jumping Propor-
tion (MiP)

In SBS, two probability parameters, SR and MiP , are
introduced to control the rate of the SBS variation and the pro-
portion of micro-jumping versus macro-jumping, respectively.
Although both parameters were fixed for all experiments, the
performance of SBS can vary with their different settings. In
this section, we investigate the effects of SR and MiP , and
try to provide a proper value (or range) of them for users.
Here, a representative function set, the WFG problem family,
is selected for demonstration.

To study the sensitivity of SBS to SR and MiP , we
repeat the experiments conducted in Section IV-A for
SR, MiP ∈ [0, 1] using a step size of 0.1 (i.e., 30
trials per function for each combination of SR, MiP ∈
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}). Due to
space limitation, we do not show the results for all WFG
problems. Instead, we show only the results for two
representative functions WFG1 and WFG3 with respect to
the 121 different combinations of SR and MiP in Fig. 10.
Moreover, for comparison, we also show the HV value
obtained by the original NSGA-II in the figure.

It is clear from Fig. 10 that the performance of NSGA-
II+SBS varies drastically with SR and MiP . For WFG1,
NSGA-II+SBS works well when both SR and MiP are around
0.5, and interestingly, NSGA-II+SBS with any settings of the
two parameters significantly outperforms the original NSGA-II
(the worst HV value of NSGA-II+SBS in the 121 combina-
tions is 8.7250, which is larger than the HV value 8.2253 of
NSGA-II). For WFG3, a better HV can be obtained by the
algorithm when working with a lower SR or a higher MiP

value. The best and worst HV values of NSGA-II+SBS in
the 121 combinations are 10.9376 and 10.9127, respectively,
and the HV value for NSGA-II is 10.9333, which is higher
than most of the results obtained by NSGA-II+SBS under
different combinations of the parameters. In the following,
we separately investigate the two parameters, trying to give
a proper setting of them for users.

First, we consider the parameter SR. We repeat the experi-
ments conducted in Section IV-A for SR ∈ [0, 1] with a step
size of 0.1. All other control parameters are kept unchanged.
Fig. 11(a) gives the results of NSGA-II+SBS with different
settings of SR on the WFG problem family, and the results
of NSGA-II are also shown for comparison. Note that SR = 0
does not mean that SBS is not performed, but rather it means
that only one dimension of the decision space is selected to
vary (i.e., j = jrand from Step 15 in Algorithm 2). It is
clear from the figure that the variation degree of performance
has an apparent distinction on different problems with respect
to different settings of the parameter. For some problems,
such as WFG1, WFG2, and WFG8, the HV value varies with
different settings of SR; but for some other problems, such as
WFG3, WFG4, WFG7, and WFG9, the HV value appears to
be relatively invariant. This occurrence is due to the difference
of the performance of NSGA-II on the WFG problems. For
WFG1, WFG2, and WFG8, the solutions obtained by NSGA-
II are far from the Pareto front. A clear improvement of the
HV result can be achieved when setting SR and MiP properly
in SBS. For WFG3, WFG4, WFG7, and WFG9, the solutions
of NSGA-II are already quite close to the Pareto front. So
whatever setting for SR and MiP , the degree of change of
the HV result is relatively inapparent, compared with that on
WFG1, WFG2, and WFG8.

In order to investigate the effect of SR on all the WFG
problems more clearly, we show the HV value with finer scales
for some problems where it is difficult to identify in Fig. 11(a).
The results of WFG5 and WFG6 are given in Fig. 11(b).
The results of WFG3, WFG4, WFG7, and WFG9 are plotted
in Fig. 11(c), where the HV value of WFG3 and WFG9 is
modified by adding or subtracting a constant to integrate them
into one figure as follows: HVWFG3 = HVWFG3 − 2.27 and
HVWFG9 = HVWFG9 + 0.22.

It is clear from the figure that the WFG problems can
generally be divided into three categories according to the
trend of their HV trajectories. The first category corresponds to
the problems where the HV trajectory rises with SR, including
WFG2 and WFG5. The second category contains WFG3 and
WFG4, where the trajectory falls with the growth of the
parameter. The remaining problems are the last category in
which HV reaches the best when SR takes some middle values.
This indicates that a rare occurrence of the SBS variation is
suitable for WFG3 and WFG4, and a frequent one is more
acceptable for WFG2 and WFG5. In fact, given that both
algorithms (NSGA-II+SBS and NSGA-II) perform fairly well
on WFG3 and WFG4 but have difficulties in obtaining a
well-converged and well-distributed solution set on WFG2 and
WFG5, a low SR value may be advisable for some relatively
simple functions while a high SR value seems more useful for
intractable problems. In addition, for an unknown optimization
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Fig. 10. HV of NSGA-II+SBS with 121 different combinations of SR and MiP on WFG1 and WFG3. (a) WFG1. (b) WFG3.

Fig. 11. HV of NSGA-II+SBS with different settings of SR on the WFG problem family. The results of NSGA-II are shown on the right of the figure.
(a) All WFG Problems. (b) WFG5 and WFG6, (c) WFG3, WFG4, WFG7, and WFG9 .

problem, the interval [0.4, 0.6] may be more reliable since the
HV of the algorithm with SR set in this interval is acceptable
on most test problems, as shown in Fig. 11.

In order to further understand the effect of SR, Fig. 12
shows the “success rate” of individuals generated by SBS
that have been inserted into the population during the evo-
lutionary process on WFG3 when SR = 0. Clearly, from 5000
evaluations, there is a relatively stable number (around 20)
of individuals inserted into the population, close to half of
the number of individuals generated by SBS. This means that
SBS can continuously generate promising solutions during the
evolutionary process even when SR = 0.

The other parameter MiP in SBS is to adjust the proportion
of micro-jumping versus macro-jumping, with a low value
corresponding to a high rate of macro-jumping. Unlike for
SR where the trend of performance trajectories shows clear
differences on a variety of functions, for MiP , NSGA-II+SBS
obtains a similar trend of the HV trajectories on different
functions. The results with different settings of MiP on the
WFG problem family are shown in Fig. 13(a). Also, for a
clearer observation, Fig. 13(b) shows the results on WFG5 and
WFG6, and Fig. 13(c) on WFG3, WFG4, WFG7, and WFG9
(HVWFG3 = HVWFG3 − 2.22 and HVWFG9 = HVWFG9 + 0.19).

As can be seen from the figure, all HV trajectories rise
at the beginning and then fall when MiP approaches 1.0.
Specifically, the algorithm performs best for WFG1, WFG2,
and WFG8 when MiP = 0.5, 0.4, and 0.4, respectively; for
WFG5 and WFG6 when MiP = 0.5 and 0.6, respectively;

Fig. 12. Probability that a solution generated by SBS has been inserted into
the population during the evolutionary process across the 30 runs of NSGA-
II+SBS on WFG3 when SR = 0 (denoted by dashed line). Black square
denotes the average number of solutions generated by SBS, and hollow circle
denotes the average number of solutions inserted into the population.

and for WFG3, WFG4, WFG7, and WFG9 when MiP = 0.8,
0.6, 0.7, and 0.8, respectively. Consequently, setting MiP

within the range of [0.4, 0.8] seems reliable for an unknown
optimization problem.

Result summary—High sensitivity of the algorithm to the
parameters SR and MiP demands a proper setting of them in
SBS. Our experiments suggest that the range of [0.4, 0.6] and
[0.4, 0.8] may be reliable for SR and MiP , respectively, for an
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Fig. 13. HV of NSGA-II+SBS with different settings of MiP on the WFG problem family. The results of NSGA-II are shown on the right of the figure.
(a) All WFG Problems. (b) WFG5 and WFG6. (c) WFG3, WFG4, WFG7, and WFG9.

unknown optimization problem. And a median of them (i.e.,
SR = 0.5 and MiP = 0.6) may be considered as a first attempt.
Furthermore, for some relatively easy problems, a lower SR

is recommended, while for some difficult ones, a higher SR

may be more suitable.

V. Comparison with Three Variation Operators

The primary purpose of this paper is to introduce a variation
operator to improve the performance of EMO algorithms. For
a better validation, we compare SBS with three representative
variation operators—opposition-based learning (OBL) [43],
jumping gene (JG) [4], and Mühlenbein’s mutation [38].

The OBL operator proposed by Tizhoosh [53] has been
found to be competitive in many fields. The main idea of
OBL is the simultaneous consideration of an estimate and its
corresponding opposite estimate in order to achieve a better
approximation for the candidate solution in the population. Let
xi be the value of an individual in the ith dimensional decision
space (xi ∈ [ai, bi], i = 1, 2, ..., D), and the opposite value of
xi can be calculated as follows:

x′
i = ai + bi − xi. (8)

Similar to the SBS variation, OBL shrinks the search space and
the concerned interval [ai, bi] is determined by the boundary of
the current evolutionary population. However, one important
difference is that the place of newly generated individuals is
fixed in OBL, while in SBS newly-generated individuals jump
among different segments and vary over the current search
space.

JG, which emulates the gene transposition in the genome,
is a variation operator to improve the performance of EAs
in multiobjective optimization. Inspired from the jumping
gene phenomenon in biological evolution, the JG operator
introduces two types of transpositions: 1) cut-and-paste trans-
position, and 2) copy-and-paste transposition, to exchange
information between individuals. JG can be implemented in
both binary-valued and real-valued scenarios [4], [39], and the
combination of JG with NSGA-II has been found to achieve a
good search performance. Further details of the JG variation
can be found in [4] and [39].

Mühlenbein’s mutation is a mutation operator for real-
valued problems. It is able to generate points in the hypercube
with the center at a point, defined by xi ± rangei × γ , where
rangei defines the mutation range and is normally set to

0.1 × (bi − ai), the + or − sign is chosen with a probability
of 0.5, and γ is defined as follows:

γ =
15∑

k=0

αk2−k (9)

where αi ∈ {0, 1} is randomly generated with p(αi = 1) =
1/16. In this mutation operator, the probability parameter
p(αi = 1) being set to 1/16 indicates that on the average
there will be just one αi with value 1. In addition, from
the settings of parameter k in Eq. (9) (i.e., k = 0, ..., 15),
new generated points are located much more often in the
neighborhood of xi and the minimum possible proximity can
be up to a precision of rangei × 2−15. Mühlenbein’s mutation
is a discrete variation operator, which can be considered as
searching among different parts (segments) in the concerned
region [18]. However, it has two key differences from the
SBS operator: 1) Mühlenbein’s mutation generates points
more often in the neighborhood of a given point, and 2) the
concerned region in Mühlenbein’s mutation is only a fraction
of the whole search space. In addition, it is necessary to point
out that despite being a general genetic operator in classical
EAs [32], Mühlenbein’s mutation, due to its similarity to SBS,
is used here as an auxiliary variation operator to be integrated
into EAs to serve the purpose of comparative study.

In order to ensure a fair competition between SBS and
the other three operators, the OBL, JG, and Mühlenbein’s
mutation operators adopt the evolutionary frame of SBS, and
also only act on the nondominated individuals which have been
eliminated by the environmental selection (i.e., Algorithm 1
remains unchanged, while Steps 2–4 and Steps 7–24 of
Algorithm 2 are replaced by the other operators). NSGA-II
is also considered as the test algorithm, and the new three
hybrid algorithms are denoted as NSGA-II+OBL, NSGA-
II+JG, and NSGA-II+MM, respectively. The parameters used
in the peer operators are set according to the recommendation
in their original papers, and the common parameters of the
four algorithms are kept unchanged.

Table XIII gives the HV results of the peer operators on all
the 36 test problems, where the results of NSGA-II+SBS from
Table IV are also repeated in this table for the convenience of
comparison. Clearly, NSGA-II+SBS considerably outperforms
the other three operators, and achieves the best HV value in 18
out of the 36 problems. NSGA-II+OBL, NSGA-II+MM, and
NSGA-II+JG perform the best in 3, 8, and 7 out of the 36
problems, respectively. Additionally, for the majority of prob-
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TABLE XIII

HV Results (Mean and SD) of NSGA-II+SBS, NSGA-II+OBL, NSGA-II+MM, and NSGA-II+JG, Where the Best Mean Among the

Algorithms for Each Case is Highlighted in Boldface

Fig. 14. Probability that a solution generated by SBS has been inserted into the population during the evolutionary process across the 30 runs of the
considered variation operators (SBS, OBL, JG, and Mühlenbein’s mutation) on WFG1 (denoted by dashed line). Black square denotes the average number of
solutions generated by SBS, and hollow circle denotes the average number of solutions inserted into the population. (a) NSGA-II+SBS. (b) NSGA-II+OBL.
(c) NSGA-II+MM. (d) NSGA-II+JG.
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lems on which NSGA-II+SBS outperforms its competitors, the
results have statistical significance (25 out of 32 problems for
NSGA-II+OBL, 13 out of 21 problems for NSGA-II+MM,
and 19 out of 27 problems for NSGA-II+JG).

In order to further understand the performance difference
among these operators, we show their “success rate” during
the evolutionary process. Specifically, we show, as a function
of the number of evaluations, the probability that a solution
generated by SBS has been inserted into the population across
the 30 runs of the four algorithms on WFG1 in Fig. 14.
Clearly, the success rate of NSGA-II+SBS is higher than that
of the other three algorithms, which means that SBS is more
efficient to generate “good” solutions that can contribute their
value in the evolutionary process.

Result summary—From the above experiments, SBS has
shown a clear advantage over the other three variation op-
erators in multiobjective optimization. Hybridized with SBS,
NSGA-II can achieve a better HV value than hybridized with
OBL, JG, and Mühlenbein’s mutation on half of the tested
problems. This means that SBS is a promising operator in
enhancing the search ability of EMO algorithms.

VI. Conclusion

This paper presented a variation operator, segment-based
search (SBS), to improve the performance of EMO algorithms
on continuous MOPs. SBS divides the search space into many
small segments according to the current evolutionary status,
and performs the macro-jumping and micro-jumping opera-
tions inside them to guide the information exchange among
“good” individuals. Moreover, the proposed SBS operator is
activated when general genetic operators of an algorithm do
not work well, thus providing a new power for the algorithm
to search toward the desired direction.

Systematic experiments have been carried out by providing
an extensive comparison on a set of 36 test problems. From
the experimental results, it can be observed that an EMO
algorithm with the integration of SBS can improve its per-
formance for MOPs. The new algorithm also outperforms its
original version when the number of decision variables shifts.
A comparative study on the BRS strategy of SBS reveals
that the boundary relaxation is very important to enhance
the search ability in multiobjective optimization. In addition,
the effect of parameters SR and MiP was investigated, and
their ranges, [0.4, 0.6] for SR and [0.4, 0.8] for MiP , are
recommended for an unknown optimization problem. Finally,
a comparison with three representative variation operators
confirmed the competitiveness of the SBS operator in dealing
with MOPs.

Segment-based search is a new concept as a variation
operator. Further studies are still required to investigate its
benefits and limitations. Possible directions of future work
include the adaptive setting of the SBS rate and micro-jumping
proportion, the investigation of SBS for other algorithms (e.g.,
the Breeder GA), and its improvement for solving MOPs with
the Pareto set having a complex shape in the decision space,
such as the UF and CF test problems.
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