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Abstract: Web application firewall (WAF) plays an integral role nowadays to protect web ap-
plications from various malicious injection attacks such as SQL injection, XML injection, and PHP
injection, to name a few. However, given the evolving sophistication of injection attacks and the
increasing complexity of tuning a WAF, it is challenging to ensure that the WAF is free of injection
vulnerabilities such that it will block all malicious injection attacks without wrongly affecting the
legitimate message. Automatically testing the WAF is, therefore, a timely and essential task. In this
paper, we propose DaNuoYi, an automatic injection testing tool that simultaneously generates test
inputs for multiple types of injection attacks on a WAF. Our basic idea derives from the cross-lingual
translation in the natural language processing domain. In particular, test inputs for different types of
injection attacks are syntactically different but may be semantically similar. Sharing semantic knowl-
edge across multiple programming languages can thus stimulate the generation of more sophisticated
test inputs and discovering injection vulnerabilities of the WAF that are otherwise difficult to find. To
this end, in DaNuoYi, we train several injection translation models by using multi-task learning that
translates the test inputs between any pair of injection attacks. The model is then used by a novel
multi-task evolutionary algorithm to co-evolve test inputs for different types of injection attacks facili-
tated by a shared mating pool and domain-specific mutation operators at each generation. We conduct
experiments on three real-world open-source WAFs and six types of injection attacks, the results reveal
that DaNuoYi generates up to 3.8× and 5.78× more valid test inputs (i.e., bypassing the underlying
WAF) than its state-of-the-art single-task counterparts and the context-free grammar-based injection
construction.

Keywords: Web application firewall, security testing, injection testing, multi-tasking, search-
based software engineering.

1 Introduction

Due to the maturity of the state-of-the-art web technologies and advancements of Internet of things,
web applications have become increasingly ubiquitous and important for enterprises and individuals
from various sectors, such as online shopping, e-banking, healthcare, e-governance and social media.
Yet, the prevalence of web applications inevitably make them one of the main targets of malicious
attacks. For example, Beery and Niv [1] reported that each web application worldwide can experience
around 173 injection attacks per month on average. According to a recent report published by Open
Web Application Security Project (OWASP)1, injection attack is one of the most common way to
compromise a web application and its data.

An unified and state-of-the-practice solution to injection attacks is the use of a web application
firewall (WAF) [2], which is a special type of application firewall that has been widely adopted to
provide protection of web applications from various malicious injection attacks. It is usually deployed
as a facade between the client and web application server aiming to analyze all HTTP messages,

∗This manuscript is accepted for publication in the IEEE Transactions on Software Engineering.
1https://owasp.org/Top10/
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Table 1: Examples of three semantically similar but syntactically different types of injection attacks

SQLi
vulnerable code SELECT * FROM users WHERE username=’$name’ and password=’$pass’;
injection attack SELECT * FROM users WHERE username=’’ OR ’1’=’1’; --’ and password=’abc’;

XMLi (XPathi)
vulnerable code users[username/text()=’$name’ and password/text()=’$pass’]
injection attack users[username/text()=’’ OR ’1’=’1 (:’ and password/text()=’:) ’]

PHPi
vulnerable code if (eval ("return ’$storedName’ === ’$name’ && ’$storedPass’ === ’$pass’;"))
injection attack return $storedName === ’’ || ’1’==’1’; //’ && $storedPass === ’abc’;

The blue/bold texts are the inputs from the user, where $name and $pass denote the variable of the username
and password given by an user, respectively. The highlighted texts are what will be commented out by the injection
attacks.

which contain potentially malicious user inputs, sent to the web application — detecting, filtering and
blocking anything malicious through a set of rules. As such, a WAF is application-independent and
is designed to prevent any type of injection attack in mind. By a type of injection attack, we refer
to the attack that specifically seeks to inject malicious code into a particular programming language
used in a web application, such as SQL injection (SQLi), XML injection (XMLi), and PHP injection
(PHPi).

Given the fast-moving nature of web applications, injection attacks relentlessly emerge all the
time and are grown with an evolving sophistication. As a result, fine-tuning the rules in a WAF is a
complex, labor-intensive and costly task especially in the presence of multiple types of injection attack.
Note that a reliable WAF not only needs to be able to detect the increasingly sophisticated injection
attacks but also to avoid mistakenly blocking legitimate HTTP messages. As such, this leaves the
WAF with a great chance to suffer from various injection vulnerabilities in practice.

To verify whether a WAF is tuned to be sufficiently secured before its production deployment,
a variety of testing techniques has been proposed for generating test inputs to the WAF, including
white-box testing [3], static analysis [4], model-based testing [5] and black-box testing [6]. However,
none of these techniques are perfect because they are either less applicable in practice or inadequate for
vulnerability detection. For example, both white-box testing methods and static analysis tools require
full control of source codes, the access of which is difficult, if not impossible, in web applications and
their WAFs due to the heterogeneous programming environments [7]. Henceforth, it is not difficult
to understand that the detection capability of white-box testing is limited. As for the model-based
testing techniques, neither developing models expressing the security policies nor constructing the
implementation of WAFs and the web applications is easily accessible. Although black-box testing
tools [2, 8, 9], mostly fuzz testing, do not require the access of source code, they often focus on the
syntax of attacks yet ignoring the semantic information, which could restrict their testing capability.

A major bottleneck of the existing black-box testing tools for WAF is the lack of support for test-
ing more than one injection attack simultaneously. This essentially contradicts the design principle of
a WAF, which aims to serve as a universal filter that works independently of the programming lan-
guage(s) that underpins a web application. Beside the impact on the applicability of the tools, such
a limitation also shuts the gate towards achieving more effective injection testing. This is because,
similar to human natural languages, malicious injection attacks of different programming languages
may impose different syntax but do have some unique semantics in common. As such, analogous to
cross-lingual translation, they can share certain common ground between them, which could generate
more sophisticated test inputs to discover injection vulnerabilities that are otherwise difficult to find.
Let us consider the examples shown in Table 1 which gives three types of injection attack, i.e., SQLi,
XMLi (XPath injection) and PHPi. Clearly, all these injection attacks contain malicious and syntac-
tically different inputs, i.e., the ’1’=’1’, OR, and -- for SQLi; the ’1’=’1’, OR, and (::) for XMLi;
and the ’1’==’1’, ||, and // for PHPi. However, the three injection attacks are also semantically
similar in the sense that they all aim to ‘fool’ the WAF and the web application by creating a tautology
(i.e., the string ’1’ is always the same) and commenting out parts of the original command fragments.
This constitutes the key motivation behind this work.

To overcome the aforementioned limitations, this paper proposes an evolutionary multi-task injec-
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tion testing fuzzer for WAF, dubbed DaNuoYi2, which automatically and simultaneously tests multiple
types of injection attacks. Specifically, DaNuoYi uses the language models (i.e., Word2Vec, see Sec-
tion 3.2.1) to capture the semantic information of each type of injection attack. In particular, such
semantic information is shared across different injection types during the training process thus to
facilitate the translation of a test input from one type (e.g., SQLi) into another (e.g., PHPi) in a
multi-task learning manner. Note that the learned translation models thereafter serve as the ‘bridges’
between different injection testing tasks during the test input generation driven by a novel multi-task
evolutionary algorithm. By doing so, DaNuoYi is empowered to improve the test input generation of
one injection type by borrowing the promising test inputs generated for all other types considered.
Contributions. In a nutshell, our contributions include:

• DaNuoYi is a fully automatic, end-to-end tool that can simultaneously test any type of injection
attack on a variety of WAFs. To the best of our knowledge, this is the first tool of its kind
that can automatically and simultaneously generate test inputs from multiple types of injection
attacks for testing a WAF.

• Surrogate classifiers based on neural networks are developed to embed the semantic information
of injection contexts into a vector representation that predicts the likelihood of bypassing the
underlying WAF.

• A multi-task translation (i.e., multi-task injection translation) framework trained by an encoder-
decoder architecture from the natural language processing (NLP) domain. Based on this frame-
work, a test input for one type of injection attack can be translated into a syntactically different,
but semantically similar one for another type.

• A multi-task evolutionary algorithm (MTEA), empowered by the surrogate classifiers, the multi-
task translation module, and six tailored mutation operators, co-evolves test inputs for different
types of injection attacks.

• A quantitative and qualitative analysis3 on three real-world WAFs (i.e., ModSecurity, Ngx-Lua-WAF,
Lua-Resty-WAF, see 4.1.2 for details), three alternative classifiers, and six types of injection at-
tacks including SQLi, XMLi, PHPi, HTML injection (HTMLi), OS shell script injection (OSi),
cross-site script injection (XSSi). Empirical results fully demonstrate the superiority of DaNuoYi
for disclosing more injection vulnerabilities for WAF (up to 3.8× more bypassing injection cases)
comparing to the single-task counterparts.

Novelty . What makes DaNuoYi unique are:

• It is able to learn the common semantic information from syntactically different test inputs for
different types of injection attacks. This is achieved by the translation model that mimics the
cross-lingual translation between natural languages.

• It is capable of generating test inputs for any type of injection attacks with different syntax
and exploit the most promising test inputs interchangeably. This is realized by a MTEA that
co-evolves multiple test input generation processes simultaneously.

The rest of this paper is organized as follows. Section 2 provides some background knowledge
related to the injection testing on WAF and the neural language model for injection testing. Section 3
delineates the technical details of DaNuoYi while its effectiveness is quantitatively and qualitatively
analyzed on three open-source real-world WAFs as in Section 4. At the end, Sections 5 and 6 discuss
the threats to validity and related work respectively while Section 7 concludes this paper and sheds
some lights on future directions.

2DaNuoYi is originally from Heavenly Sword and Dragon Slaying Sabre, a famous knights-errant novel by Jin Yong
(Louis Cha). Its full name is Qiankun Danuoyi and it one of the most premium Kongfu which is able to leverage and
mimic different types of Kongfu power from the enemies to attack them back harder — this is similar to what our
approach can do in imitating different types of injection attack to test the WAF.

3The source code and data related to this paper can be found from our lab repository: https://github.com/COLA-
Laboratory/DaNuoYi
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Figure 1: Illustrative example of injection testing for WAF.

2 Preliminaries

2.1 Injection Testing on WAF

In the development of modern web applications, a WAF serves as the first entity to filter malicious
injection attacks coming to the underlying application. Taking the most commonly used signature-
based WAFs as an example, this is achieved by setting some rules, e.g., the regular expression, that
detects critical words in the user inputs embedded in a HTTP request it receives.

Fig. 1 gives an intuitive example of a typical testing process on a WAF. To test a particular type
of injection, say SQLi, one usually relies on fuzzing that randomly generates test inputs for the WAF.
In practice, a test input is a failed attack in case it is blocked by the WAF; otherwise it bypasses
the WAF thus indicating a SQLi vulnerability under the current WAF setting. For example, the
expression shown in Fig. 1 can block any input that contains +*‘/-$#^!@&∼. Therefore, the test
input OR 1=1 will be blocked. However, some other ones, e.g., OR%201=1, can bypass the WAF. Note
that, according to Demetrio et al. [10] and Appelt et al. [2], the test inputs that bypass the WAF are
always considered to be malicious, as they can either successfully inject the web application behind
or would provide necessary information that help to eventually achieve so (e.g., allowing the attackers
to know which inputs have been blocked or not — a typical blind attack).

Although a HTTP message may contain multiple user inputs (e.g., a login form needs both user-
name and password), the entire message is compromised as long as one of the malicious user inputs
can bypass the WAF. Therefore, automatically testing WAF often focus on generating a single test
input for the WAF [2]. Further, it can be easily adopted to other cases where multiple user inputs are
required by combining different generated test inputs together.

2.2 Feature Embedding for Injection Testing

A successful test input that discovers injection vulnerabilities needs to comply with the syntax of the
underlying injection type. Our recent study [11] demonstrated that a programming language bears
many similarities with natural languages. Henceforth, leveraging the semantic information embedded
in injection attacks can facilitate the automated test case generation accordingly.

To exploit the semantic information of a test input, the first step is to embed its words into
a measurable representation. Its basic idea is to encode each word separated by blank, through a
vocabulary, into a fixed length vector with the same dimension as the number of words in the test
input. Taking SQLi as an example, the test input ’ OR ’1’=’1’ will be tokenized into {’, OR, ’, 1, ’, =,
’, 1,’}. After distinguished encoding, ’= (1, 0, 0, 0), OR= (0, 1, 0, 0), 1 = (0, 0, 1, 0), and == (0, 0, 0, 1).
These vectors are then further embedded by a neural network, namely a neural language model (NLM),
into another d ≥ 1 dimensional vector (d is a predefined hyper-parameter) to take additional contextual
information into account (see Section 3.2.1). In particular, each dimension partially contributes to the
meaning of a word. For example, when d = 5, we may have OR= (32, 19, 3, 81, 22). The word vectors
would then be further extracted, when needed, to better understand their semantic information in the
translation, for which we will elaborate in Section 3.3.2.
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Figure 2: System architecture and workflow of DaNuoYi.

3 Multi-task Injection Testing with DaNuoYi

DaNuoYi is designed as an end-to-end fuzzing tool to automate the test input generation for detecting
multiple types of injection vulnerabilities. Its overarching hypothesis is that test inputs from syntacti-
cally different types of injection attacks share certain latent semantic similarities that can be useful to
generate sophisticated test inputs for each other. As shown in Fig. 2, the main workflow in DaNuoYi

consists of four components, each of which is outlined as follows.

• Data gathering and profiling: DaNuoYi assumes a context-free grammar (CFG) for each type of
injection attack, based on which test inputs can be generated to profile the WAF.

• Surrogate classifiers: To better distinguish the ‘good’ test inputs from the ‘bad’ ones for a WAF,
in DaNuoYi we build a classifier for each type of injection attack, by using the data generated by
the CFG, to estimate the likelihood of a test input bypassing the WAF. Note that this likelihood
is used to evaluate the fitness of a candidate test input generated by the MTEA.

• Multi-task translation model: We develop a multi-task injection translation paradigm to bridge
the test input generation across different types of injection attack. For any pair of injection
types, we build a translation model that translates the test input from one type of injection
attack into a semantically related one. Note that all these translation models are trained using
the data also generated by the CFG and their parameters are shared during the training process,
thus we can expect to improve the effectiveness of the translated test inputs.

• Multi-task evolutionary algorithm: To generate test inputs for multiple types of injection attack
simultaneously, we develop a MTEA to continuously evolve test inputs towards successful in-
jections. The initial test inputs are seeded according to the CFG. During each evolutionary
iteration, promising test inputs generated for one type of injection attack are shared across
all other types of injection attack by using the multi-task translation models. Only the most
promising test inputs, which are highly likely to achieve successful injections, can survive to the
next iteration.

In the following paragraphs, we elaborate the implementation detail of each component.

3.1 Data Gathering and Profiling

3.1.1 Context-free Grammar for Injection Searching

Data is arguably the fountain of life for any machine learning task. In DaNuoYi, we take advantage
of the CFG for each type of injection attack to automatically generate some initial test inputs, called
rule-based injection search method. Specifically, we define a CFG as a tuple G = 〈V,Σ,R,S〉 while
the meaning of each element is delineated as follows.

• V is a set of symbols used to represent non-terminal entities in the language, also known as
variables.
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3.1 Data Gathering and Profiling
Table 2: Characteristics of various CFGs used in DaNuoYi including the number of productions (Prod.),
terminals (Term.), nonterminals (Nonterm.), recursive productions (Rec.), unproductive symbols (Un-
prod.), and inaccessible symbols (Inacc.).

Injection Prod. Term. Nonterm. Rec. Unprod. Inacc.

SQLi 49 102 26 0 0 3

XSSi 58 404 47 0 0 1

PHPi 51 144 49 0 0 26

OSi 7 41 7 0 0 2

XMLi 49 102 26 0 0 3

HTMLi 66 141 55 0 0 19

• Σ consists of a finite number of terminal symbols that are separate from the set V and collectively
form the content of the strings that belong to the language.

• The set of production rules R consists of a finite number of rules, each comprising a single
variable and a string of variables and terminals. These rules define the way in which variables
can be replaced by other variables or terminals. A grammar may have multiple production rules
for a given variable, and the entire set of rules is known as the grammar’s production system.

• The start symbol S is a special non-terminal symbol that represents the entire string generated
by the grammar.

Table 2 summarizes the statistics of the selected characteristics of the CFG used in this work, while Al-
gorithm ?? provides the pseudo-code for the CFG-based injection generation. Note that for the types
of injection attack considered in this work, the grammar for SQLi is derived from those defined in [2]
while the others are developed by ourselves according to a systematic summary of the literature [12–14]
and several well known open-source payload4. In practice, the CFG for any arbitrary type of injec-
tion attack can be created in a similar way or there are readily available ones to use, such as those
generated in this work. We reported the numbers of unproductive symbols and unreachable symbols.
These symbols do not work in the test inputs generation process. The context-free grammars used to
generate different types of test inputs are for proof-of-concept purposes only currently.

To have an intuitive illustration of the CFG and its corresponding test input generation mecha-
nism, Fig. 3 gives a sample grammar of XSSi while the complete grammar can be found from our
supplementary document5. In Fig. 3, ‘→’ represents production; ‘,’ represents connector; ‘|’ rep-
resents replacement sign. In order to generate a test input, we start from the root and the branches of
the grammar tree that are generated according to a some predefined rules of the grammar in a random
manner till the leaf node is reached. At the end, the combination of leaf nodes constitutes a test input.
It is worth noting that the grammar is generic. Let us look at the test input example shown in Fig. 3
again. %0A%53r%43=javascript:alert(1)%09 gives a popup attack by using alert(1). In particu-
lar, alert(1) is derived from a non-leaf node jsString. Therefore, the other variants of alert(1)
can also be included in the generator of jsString. Note that a simple alternation of content like
alert(2) does not come up to a feasible variant while only some semantically similar variants (e.g.,
%61%6c%65%72%74%28%31%29,&#x61) count.

3.1.2 Datasets Construction

Based on the test inputs generated from the CFG of all the types of injection attack considered in
DaNuoYi, we can build the dataset for training our surrogate classifiers and the multi-task translation
model as well as the initial seeds for the test input generation in MTEA thereafter. Note that it is
not uncommon that there is a readily available dataset for injection testing of a given type of injection

4 MCIR, Commodity-Injection-Signatures, xxe-injection-payload-list
5 https://tinyurl.com/3cu4ahrb
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3.1 Data Gathering and Profiling

Algorithm 1: Injection Generation Algorithm Using Context-Free Grammar

Input: A CFG G = 〈V,Σ,R,S〉 for the target injection task
Output: I: An injection instance

1 if s == Null then
2 s← S
3 /* Initialize the result injection instance */

4 I ← ∅
5 /* Set the start symbol as the current symbol */

6 while s ∈ V do
7 /* Randomly select a production rule for s */

8 rule← selectRandomRule(s,R)
9 foreach symbol in rule do

10 if symbol ∈ Σ then
11 /* Append the terminal symbol to the injection instance */

12 I ← I + symbol

13 else if symbol ∈ V then
14 /* Recursively expand non-terminal symbols */

15 I ← I+genearteTestInput(G, symbol)

16 return I

'root': (('directContext')|('attributeContext')|('eventContext')
'attributeContext': ('terDQuote', 'wsp', 'srcAttr', 'terEqual', 'jsStatement', 
'wsp')|
                    ('pre', 'terLess', 'aTag', 'wsp', 'herfAttr', 
'terEqual', 'jsStatement','wsp', 'terGreater', 'rightALabel')|
                    (‘pre', 'terLess', 'iframeTag', 'wsp', 'srcAttr', 'terEqual', 
'jsStatement','wsp', 'terGreater')|
                    ('pre', 'terLess', 'scriptTag', 'wsp', 'srcAttr', 'terEqual', 
'jsFile','wsp', 'terGreater', 'rightSciptLabel')
'jsString': ('alert(1)')|
            ('%61%6c%65%72%74%28%31%29’)|
            ('&#x61;&#6c;&#x65;&#x72;&#x74;&#x28;&#x31;&#x29;')|                           
            ('&#97;&#108;&#101;&#114;&#116&#40;&#57;&#41;&#59')

root

attributeContext

wsp srcAttr terEqual jsStatement

terLF charS charR charC“

%0A %53 r %43

=

javascript: %09

altert(1)

[terDQuote] wsp

jsString

terTab

Figure 3: An illustrative example of the grammar tree for XSSi.

attack from past releases6, which can be of great help to enrich the dataset. To demonstrate a wide
applicability of DaNuoYi, this paper assumes that there is no readily available dataset.

Note that although using the CFG alone can search for injection cases, its capability is rather
limited. According to our preliminary experiments, the number of bypassing injection cases, as well as
the diversity, generated by the CFG alone is not sufficient to train a capable surrogate classifier and
neural translation models, even when being allocated with a sufficiently large amount of computational
budget. In addition, it highly depends on the type of injection attack. In contrast, DaNuoYi has

6 https://github.com/payloadbox
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3.2 Surrogate Classifiers Learning with Word Embedding

shown an outstanding performance for injection case generation in terms of both successful rate and
the diversity.

3.2 Surrogate Classifiers Learning with Word Embedding

For most existing WAFs, a test input can only result in a binary outcome, i.e., either pass or fail.
This does not provide sufficient information to evaluate the effectiveness of a test input and can, even
worse, mislead the search-based test input generation in DaNuoYi. To address this problem, we train
a surrogate classifier for each type of injection attack by using the data collected in Section 3.1.1
as a priori. As reported in a recent study [11], semantic information of test inputs can significantly
improve the injection testing. In this work, we treat the test inputs of a type of injection attack akin
to sentences from a natural language. Then, we leverage techniques from the NLP domain to build
the language model for each type of injection attack. In the following paragraphs, we first introduce
the language model used in DaNuoYi and then describe the mechanism of the surrogate classifier.

3.2.1 Word Embedding

As mentioned in Section 2.2, to better handle the semantic knowledge in the test inputs, the first step
is to convert a sequence of words belonged to a test input into a word vector and this is also critical
for DaNuoYi to understand the semantics embedded in test inputs. For example, the language model
needs to be able to understand that ‘+’, ‘/**/’, ‘%20’, ‘%09’ are synonyms for the blank character
in a test input. They merely represent different forms that disguise the attacks.

More specifically, we apply the classic Word2vec in DaNuoYi to train a NLM that converts a test
input into the corresponding word vectors. In particular, we use the continuous bag of words (CBOW)
model [15], which is a context aware version of Word2vec, to identify similar words in test inputs based
on the contextual information, as the meaning of each single word in a test input vary depending on
the context. Suppose that wi is the i-th word in a test input, the CBOW model correlates a target
word wi and its context words under a given window size. For example, if the window size is two,
the context words are (wi−2, wi−1, wi+1, wi+2). Note that the context information have shown to be
promising on providing more accurate vector embedding of the test inputs [11].

3.2.2 Surrogate Classifier

There are many classifiers [16, 17] available for predicting whether an injection test input can bypass
the WAF or not. In this work, we choose three neural network models, i.e., long-short term memory
(LSTM) [18] network, recurrent neural networks (RNN) [19] and gated recurrent unit (GRU) [20] to
serve our purpose. There are four major reasons.

• They have been reported to be highly effective in handling the semantics of languages, i.e., they
work well with the vector embedding of words [21,22].

• They have been widely used in prior works [23–25].

• It is plausible to build a large set of data samples since the possible number of test inputs for
injection testing is enormously high.

• They only need to be trained once at the beginning and thus the training overhead is acceptable.

Using LSTM as an example, the neural architecture of our surrogate classifier is given in Fig. 4. In
practice, the classifier7 takes the vector embedding of a test input as input and predicts a probability
that decides whether this test input can bypass the WAF or not. In DaNuoYi, we leverage this output
probability as the fitness function to guide the search-based test input generation.

7It is worth noting that the validation accuracy of surrogate classifier is approximately range from 90 to 99% in our
offline experiments. Based on context-free grammar developed in Section 3.1.1, our training dataset consists of diverse
types of test inputs. These are adequate to support the effectiveness of surrogate classifier.
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3.3 Multi-task Translation Framework

LSTM LSTM LSTM LSTM LSTM

Hidden
States

Encoder Classifier
Bypassed

or
Blocked

Embedding

sleep （ 20 ）

Figure 4: The neural architecture of the surrogate classifier based on LSTM. Note that LSTM can be
replaced by GRU and RNN.

Remark 1. Our proposed fitness assignment approach utilizing surrogate classifiers offers multiple
advantages:

• First, it allows the EA to allocate a fitness value to every input, even if the input is blocked by
the WAF.

• Second, the employment of surrogate classifiers decreases the amount of queries made to the
SUT, thereby enhancing the efficiency of the EA.

• Last but not the least, surrogate classifiers are capable of revealing the distinct characteristics of
successful injection attacks, which can contribute to the development of more effective test input
designs.

Remark 2. In the literature of search-based test input generation, there have been various fitness
assignment approaches proposed to guide the search process. For example, Poulding et al. [26] proposed
a coverage probability-based fitness assignment that estimates the minimum coverage probability induced
by a candidate input profile. Unfortunately, this approach may not accurately represent the behavior
of the system under test (SUT) due to its reliance on a finite set of inputs. In [27], Kifetew et al.
proposed a fine-grained fitness measurement based on branch distances [28] that span multiple classes of
the SUT. Havrikov et al. [29] introduce k-path coverage as a measure of input coverage that considers
the coverage of individual syntactic elements and their combinations up to a given depth k. Compared
to coverage probability-based fitness assignment, surrogate classifiers offer a more efficient and precise
method for predicting if an injection can bypass WAFs by executing a set of inputs on the SUT and
observing the coverage achieved. Besides, another idea [30] is to use a CFG to parse a set of sample
input files representing common program usage and determine probabilities for individual grammar
productions during parsing. Although this method aims to generate uncommon test inputs, it is not
suitable for use as a fitness measurement for EAs.

3.3 Multi-task Translation Framework

In DaNuoYi, the translation between the test inputs for different types of injection attack is conceptually
similar to the cross-lingual translation in NLP. This is the foundation of knowledge transfer in DaNuoYi.
It aims to translate a high quality test input for one type of injection attack to a semantically related
and meaningful test input for another type. Such translation enables DaNuoYi to share and unify
knowledge among different types of injection attack. More specifically, there are two main steps as
follows.

3.3.1 Data Preprocessing

Generally speaking, the input of our multi-task translation model is a test input for one type of
injection attack, while the output is the ‘translated’ test input for another type. In this case, a
data instance is a pair of semantically related test inputs from two types of injection attack, and the
translation is asymmetric. Henceforth, when there are, say, six different types of injection attack, we
need to prepare

(
6
2

)
= 15 pairs of datasets and models to cover all bidirectional translations.
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3.3 Multi-task Translation Framework

OR + 1 = 1
. . .

Tokenizer

SQLi Encoder
/w Attention

XSS Encoder
/w Attention

<script>alert(1)</script>
. . .

Input

Tokenize

Encoding

Decoding

(a) Single-task injection 
translator based on Seq2Seq

Single-task 
Translator Pool

SQLi

PHPi

OSi

XMLi

HTMLi

XSSi

SQLi

PHPi

OSi

XMLi

HTMLi

XSSi

(b) Multi-task injection translator 
architecture

Figure 5: Illustrative example of the Seq2Seq framework for test input translations.

Given a pair of datasets for two types of injection attack, it is challenging to evaluate the semantic
similarity between two test inputs. In DaNuoYi, we use the latent semantic indexing model (provided
by Gensim8) to measure the similarity of semantic correlation between test inputs from two different
types of injection attack. By doing so, any test input for one type of injection attack is paired with a
(most similar) test input for another type. Thereafter, the paired data is stored into a dataset.

3.3.2 Multi-Task Injection Translation

To capture the semantic information of a type of injection attack, DaNuoYi chooses Seq2Seq [31], a
LSTM-based Seq2Seq translation model9 to serve the purpose. Note that Seq2Seq has been widely
used in many downstream NLP tasks including machine translation [31], text summarization [32],
and question answering [33, 34], to name a few. Seq2Seq is able to transform a sequence of words
into another relevant sequence, thus enabling the translation of test inputs from one type of injection
attack into another. Let us consider the example shown in Fig. 5(a), the incoming test input is OR+1=1
while its corresponding outcome could be <scrpit>alert(1)</script>.

As shown in Fig. 5(a), Seq2Seq model consists of two key components, i.e., attention-based encoder

and decoder, each of which can be regarded as an independent LSTM model [19]. The inputs of the
encoder are a sequence of word vectors X = {x1, · · · ,xs} while the outputs of the decoder are
another sequence of word vectors Y = {y1, · · · ,yp}. In particular, s and p respectively indicates the
number of characters of the input and output sequences.

In a nutshell, Seq2Seq model aims to learn the following conditional distribution based on which
the prediction of a sequence can be made:

p (y1, · · · ,yp|x1, · · · ,xs) . (1)

8https://radimrehurek.com/gensim
9Our translation models are built upon OpenNMT-Py, a popular open source neural machine translation system.
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3.4 Multi-Task Evolutionary Test Input Generation

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

Hidden
States

Encoder Decoder

sleep （ 20 ） <EOS>

Softmax

Embedding

sleep %20 20 %20 <EOS>

<BOS> sleep %20 20 %20

Figure 6: An illustration of the architecture of our Seq2Seq model for multi-task injection translation.
〈BOS〉 and 〈EOS〉 are used to indicate the beginning and end of a sequence, respectively. Note that
the decoder uses the previously decoded token and hidden state as supplementary inputs for the next
time step. Please refer to https://opennmt.net for more details about translation model.

Specifically, each word of the target sequence is conditioned on the following conditional probability:

p (yt+1|y1, · · · ,yt) = g (hyt , ct+1,yt) . (2)

Given the input sequence {x1, · · · ,xs}, we can calculate and update the hidden states of the
encoder as {hx1 , · · · ,hxs}. Then, we use the attention mechanism [31] to calculate the context
vector C = {c1, · · · , cp}, where ci =

∑s
t=1 aitht and weight ait enables the Seq2Seq to focus on

different parts of the input sequence when predicting the word vector yi. At the end, the decoder

sequentially predicts the target word by using the hidden states and the context vector C which also
serves as the initial hidden state of the decoder. Note that the hidden states will be updated as
words being generated. This process stops when the last word in the sequence is predicted. To help
understand the multi-task injection translation model, we also provide the architecture of the Seq2Seq
model in Fig. 6.

In DaNuoYi, a test input from one type of injection attack can in principle be translated into any
other type. This cross-lingual translation is implemented by a multi-task learning paradigm, as shown
in Fig. 5(b), where we train the pair-wise translators (i.e., the single-task translator based on Seq2Seq

as shown in Fig. 5(a)) for any two of the injection types. Our preliminary experiments show that
the single-task translator outperforms the parallel multi-task translation architecture. This structure
enables the semantic information to be shared between the test input pairs for any two types of
injection attack during the training process. Thus, it can produce more effective translation models.

Remark 3. In our context, the term “semantic” refers to the intended meaning or purpose of a
payload or query in a web application. Note that injection attacks that modify the semantics of a
query or command can have serious consequences, such as allowing an attacker to access sensitive
data or perform unauthorised actions.

3.4 Multi-Task Evolutionary Test Input Generation

In DaNuoYi, we develop an MTEA, extended from the classic single-task (µ + λ)10 evolutionary al-
gorithm where µ = λ, to evolve and automate the test input generation across multiple types of
injection attacks. The reasons for using evolutionary algorithms to facilitate the test input generation
are justified as follows.

• As discussed in [11], the number of potentially feasible test inputs for a specific type of injection
attack is typically too large to efficiently enumerate. Furthermore, the corresponding search
space is complex and unknown a priori. These characteristics make evolutionary algorithms
well-suited for generating effective test inputs due to their ability to explore a wide range of
potential solutions in a black-box search space.

10In our implementation, it’s worth noting that the choice of the evolution strategy is not a critical factor and does
not impact our experimental conclusions.
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3.4 Multi-Task Evolutionary Test Input Generation

Algorithm 2: Multi-Task Evolutionary Algorithm.
Input:
G: context-free grammars for all injection tasks
C: surrogate classifiers for fitness assignment
T : multi-task translation models

Output:
A: bypassing cases for all injection tasks

1 foreach Pi ∈ P do
2 Pi ←genearteTestInput(Gi ∈ G)
3 /* Shared mating pool composing of all populations */

4 Mi ← Pi, Mi ∈M
5 while The computational budget is not exhausted do
6 foreach Pi ∈ P do

7 P ′ ← ∅ /* Offspring injections in Pi */

8 B ← ∅ /* Bypassed injections in Pi */

9 foreach S ∈ Pi do
10 Sx ← getFromMatingPool(Mx ∈M)
11 St ←translate(Sx, Tk ∈ T )
12 if bypassingWAF(St) == True then
13 B ← Sx
14 else
15 Sm ←mutate(S)
16 if bypassingWAF(Sm)==True then
17 B ← St

18 P ′ ← P ′ ⋃(Sx|Sm)

19 Ai ← Ai

⋃
B

20 P ′ ← P ′ − B
21 fitnessEvaluate(P ′, Ci ∈ C)
22 U ←sortByFitness(Pi

⋃
P ′)

23 Pi ←top m test inputs from U
24 foreach Pi ∈ P do

25 /* Update the sharing mating pool */

26 Mi ← Pi, Mi ∈M

27 return A

• The iterative and population-based nature of evolutionary algorithms also allows for a more
thorough and diverse exploration of the search space. This can lead to the discovery of novel
and effective test inputs [2, 9, 11].

As the pseudo-code shown in Algorithm 2, each type of injection attack has its own population of
test inputs, which can be shared with each others during the search. To comply with the syntactical
correctness, the initial population (lines 1 to 4) of each injection type is fully seeded by the test inputs
generated according to Algorithm ?? (line 2) introduced in Section 3.1.1. To improve the evolution
efficiency, the bypassing cases are removed before evaluation in every generation.

Note that at each generation, we run the test inputs in all the populations against the WAF, after
which those can successfully bypass are removed from its population but stored in the corresponding
archive for later evaluation (lines 19 to 23). Moreover, the individual injection case whose fitness
is below the average fitness of the population is replaced by randomly generated injections in order
to maintain a promising balance between convergence and diversity at the early stage of evolution.
This can help avoid the search being trapped at some patterns of injection attacks that have already
discovered the relevant vulnerabilities. This is important for injection testing [2].

Remark 4. In Algorithm 2, generateTestInput bypassingWAF returns the result of the bypass-
ing check. fitnessEvaluate: Assigns fitness using the corresponding surrogate classifiers. sortBy-
Fitness returns the population sorted according to each individual’s fitness.
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3.4 Multi-Task Evolutionary Test Input Generation

3.4.1 Representation

Given the support of the word embedding in the surrogate classifiers and translation models for each
type of injection attack, our encoding for the MTEA in DaNuoYi is a string of words, representing a
particular test input that can be of a different length. As such, the evolved test inputs can be directly
attached to the HTTP request sent to the WAF for performance evaluation.

3.4.2 Objective Function

As discussed in Section 3.2.2, the trained surrogate classifiers serve as the fitness function that evaluates
the likelihood of a test input bypassing the WAF (line 21). Since such a classifier is empowered by
the word embedding, no additional processes are required for evaluating a test input.

3.4.3 Mutation Operators

To better maintain syntactically correct test inputs, DaNuoYi only uses mutation operators for offspring
reproduction (line 15). In particular, we develop the following six word-level mutation operators to
mutate a test input into another different yet semantically related test input. In practice, at least one
mutation operator will be randomly selected with the same probability for offspring reproduction:

1. Grammar tree transformation: Drawing upon the CFGs described in Section 3.1.1, this method
involves converting a subtree of the grammar tree into a new subtree, which is randomly gener-
ated using the same production rules. It is important to ensure that the resulting subtree adheres
to the syntax constraints of the production rules in the original subtree’s position within the
tree. For example, jsString-> alert(1) to %61%6c%65%72%74%28%31%29

2. Text transformation: It confuses the capital and small letters in a test input. For example,
SCRIPT to sCrIPT.

3. Blank replacement: It replaces the blank character in a test input with an equivalent symbol.
For example, "+alert(’XSSi’)+" to "%20alert(’XSSi’)%20".

4. Comment concatenation: It randomly adds comments between two words. For example, <table
background=‘’></table> to <table/*inj- ection*/background=‘’></table>.

5. ASCII mutation: It mutates a word to its equivalent ASCII encoding format.

6. Unicode mutation: It mutates a word to its equivalent Unicode format.

The first mutation operator, i.e., Grammar tree transformation, depends on the underlying injection
type, as it is based on the corresponding CFG which is language specific; while the other five mutation
operators are generic. In particular, all mutation operators are syntax-compliant since they either
make change in a way that complies with the corresponding grammar as the first operator or perform
straightforward encoding amendment and comment insertion, etc, as the other five operators.

Remark 5. Certain evolutionary algorithms, including evolutionary strategies, predominantly em-
ploy mutation operators while excluding recombination operators such as crossover. In the context of
DaNuoYi, we have observed that mutation-centric methods are better suited for preserving input seman-
tic information. Conversely, recombination operators have a higher tendency to generate solutions that
fail to retain the required semantic characteristics. To be more specific, traditional crossover operators
are not atomic and involve global recombination based on randomly selected node positions. When we
cut the context-free grammar (especially for complex CFGs) from random positions, the recombination
operations may lead to test inputs with potential code syntax errors. In other words, crossover opera-
tions can be more challenging to control in terms of adhering to the syntax of the target programming
language, particularly when combining parts from parents with complex context-free grammars. In
contrast, mutation operators are atomic and utilize nodes with the same types, which often simplifies
the task of ensuring that the resulting structure remains valid within the CFG. In conclusion, defining
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and implementing crossover operators for context-free grammars used in test input generation presents
significant difficulties. We will explore the development of reliable crossover operators in future works.

3.4.4 Knowledge Sharing and Multi-Task Evolution

As shown in Algorithm 2, to facilitate the evolution of test input generation across multiple types of
injection attack from different populations, the MTEA in DaNuoYi carries out a multi-task evolution
in which each task is a standard evolutionary algorithm that evolves the test inputs with respect to a
given type of injection attack (lines 5 to 26). Different from the traditional single-task evolutionary
algorithm, in which the mating parents are merely from the same parent population, the offspring
generation in MTEA aims to take advantages of elite information from all tasks. In particular, MTEA
maintains a sharing mating pool, in which the mating parents are collected from the populations of
any randomly chosen tasks by using a top-k (k equals the population size) fitness ranking selection
mechanism (line 22). Such a mating pool is updated at the end of every generation (lines 24 to 26).
Since the test input generation for one type of injection attack can exploit the semantic knowledge
of the promising test inputs from other relevant types, we can expect to have a better chance to find
more sophisticated test inputs for injection. In particular, the translation of a test input from one
type of injection attack to another is realized by a corresponding translation model as introduced
in Section 3.3. Note that if the translation fails, a mutation operation will be conducted to amend
this translated test input. Note that since the initial population is seeded by test inputs generated
according to different CFGs, which are malicious by themselves, we can expect that the test inputs
generated by MTEA are still malicious.

4 Experiments and Evaluation

In this section, we evaluate and analyze the effectiveness of DaNuoYi through answering the following
research questions (RQs) in the presence of multiple types of injection attack.

• RQ1: Does DaNuoYi find more valid test inputs that bypass the WAF than the baselines in-
cluding the open-source SQLMap and its single-task counterparts respectively designed for each
type of injection attack? Note that the corresponding single-task counterpart does not apply
the translation between different types of injection attacks.

• RQ2: Does DaNuoYi find more valid test inputs than a random search (based on grammar only)
with translation but without the mutation operators?

• RQ3: Does DaNuoYi find as many bypassed injection attacks as the variant without fitness
ranking? Note that this variant applies the translation but it does not have an elitism.

• RQ4: What happens if we merely rely on the use of the dedicated CFG to generate test inputs?

All experiments were carried out on a server equipped with 64-bit Cent OS7, which has two Intel
Xeon Platinum 8160 CPU (48 Cores 2.10GHz), 256GB RAM and four RTX 2080 Ti GPUs. The
target WAFs were deployed on a virtual cloud server with 64-bit Ubuntu 18.04, which is based on the
AMD EPYC 7K62 48-Core CPU and has 1GB RAM.

Remark 6. RQ1 seeks to evaluate the effectiveness and added value of our proposed multi-task test
input generation paradigm. RQ2 aims to evaluate the effectiveness of mutation operators in evolu-
tionary algorithms. RQ3 aims to evaluate the importance of the selection pressure in evolutionary
algorithms. RQ4 investigates the potential drawbacks of merely using the CFG-based method for the
test input generation, compared to employing an evolutionary algorithm, and aims to understand the
bottlenecks of DaNuoYi.
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4.1 Experiment Setup

4.1 Experiment Setup

4.1.1 Types of Injection Attack

In theory, DaNuoYi can generate any type of injection attacks to test the vulnerabilities of the system
under test as long as the computational budget permits. In this work, we examine six types of
injection attack. They are chosen according to their prevalence and severity reported by OWASP11.
We summarize the characteristics of these injection attacks as follows.

• SQLi: It targets relational database management systems. This attack involves an attacker
inserting malicious SQL statements into an entry field of the application, which can cause the
application to unintentionally execute those statements, resulting in unauthorized access to or
modification of sensitive data. SQLi is widely recognized as the most prevalent injection attack
and is a significant threat to data security, often resulting in severe data breaches.

• XSSi: It targets web applications using JavaScript to dynamically update or modify web page
content. In an XSSi, an attacker inserts malicious code, typically in the form of a script, into a
web page. When other users visit the page, the code can execute, potentially resulting in various
types of attacks such as session cookie theft or malware injection.

• XMLi: It targets applications utilizing XML or XPath to process data. Attackers can manipulate
data encoded in XML format and exploit vulnerabilities in XPath queries to gain unauthorized
access to sensitive information. This attack can result in severe data breaches.

• HTMLi: It targets web applications and can result in the modification of web pages rendered
by the application, potentially affecting all visitors. Attackers insert malicious HTML code into
a web page, which can be executed by other users who visit the page. This attack can lead to
various types of consequences, including phishing or the theft of session cookies.

• OSi: It targets applications executing shell commands. Attackers can exploit OSi vulnerabilities
to inject malicious system-level commands, such as port listening or a fork bomb, and execute
them on the server-side. This attack can lead to serious security breaches and unauthorized
access to sensitive data.

• PHPi: It targets applications utilizing the PHP programming language. Attackers exploit PHPi
vulnerabilities to insert malicious PHP code into the application, potentially leading to various
types of attacks depending on the context, such as path traversal or denial-of-service attacks.

4.1.2 Subject WAFs

To evaluate the practicality and improve the external validity, we evaluate DaNuoYi on the following
three widely used real-world WAFs.

• ModSecurity12: This is a cross-platform WAF and it serves as the fundamental security compo-
nent for Apache HTTP Server, Microsoft IIS, and Nginx, which underpin millions of the web
applications worldwide. This WAF maintains a large amount of rule sets that provide defense
mechanisms for various types of injection attack.

• Ngx-lua-WAF13: This is a scalable WAF designed for high-performance web applications. It
also supports the defense on different types of injection attack with rule sets complement those
covered by ModSecurity.

11 https://owasp.org/www-community/attacks
12 https://www.modsecurity.org
13 https://github.com/loveshell/ngx_lua_waf
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4.1 Experiment Setup
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Figure 7: Bar charts of the distribution of both the blocked and the bypassed data in the training and
testing sets, respectively, of six types of injection attack.

• Lua-resty-WAF14: This is another popular and scalable open-source WAF based on OpenResty15.
It supports the patterns extended from ModSecurity.

We deploy a dummy web application behind the WAFs. Note that in this work, the testing target
is the WAF; the web application merely serves as the destination of the attacks.

4.1.3 Dataset

As discussed in Section 3.1.1, we use the CFGs to generate the initial test inputs which constitute
the datasets for training both the surrogate classifiers and the multi-task translation framework of
DaNuoYi shown in Fig. 5.

• To train the classifier for each type of injection attack, we generate 20, 000 test inputs for three
underlying WAFs, respectively. These test inputs are labeled as either blocked or bypassed
according to the results when they are fed into the WAF. The same mechanism is applied to
sample 20, 000 test inputs, exclusive from the training set, to constitute the testing set. Note
that the identical injections are filtered in all datasets. The distribution of the blocked and
the bypassed data in both training and testing sets are shown as bar charts in Fig. 7 while the
corresponding numbers are listed in Table 8 of the Appendix.

• To train the models for the bidirectional translation between any two types of injection attacks
as introduced in Section 3.3.1, we need

(
6
2

)
= 15 pairs of datasets given six types of injection

attack. To that end, we generate 30, 000 pairs of translatable test inputs for each of these 15
pairs of datasets. To avoid data overlapping, we also filter identical injections in all datasets
and the testing sets are sampled as extra 20, 000 test inputs exclusive from the training sets. As
before, Fig. 8 plots the distribution of the number of instances in the translation datasets for
six types of injection attacks used in our experiments. Besides, the corresponding numbers are
listed in Table 9 of the Appendix.

Remark 7. From our preliminary experiments, we determined that 20, 000 test inputs are sufficient
to evaluate the performance of different algorithms while remaining computationally efficient in terms
of time and memory usage. We acknowledge that the appropriate number of test inputs can vary
depending on the specific problem and research objectives; however, exploring this aspect is beyond the
scope of this paper.

14 https://github.com/p0pr0ck5/lua-resty-waf
15https://openresty.org
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Figure 8: Bar charts of the distribution of the number of instances in the translation datasets for six
types of injection attack. Note that the training set is highlighted in black while the testing set is in
gray color.

4.1.4 Settings

DaNuoYi synergies several key techniques of NLP and search-based software testing, each of which has
some hyper-parameters. In our empirical study, the relevant hyper-parameters are set according to
the results of offline parameter tuning.

• Word2Vec: The dimension of the embedding vector of each token w.r.t. a test injection in
DaNuoYi as 128.

• Classifier: For each type of injection attack, we apply three different neural networks (i.e., RNN,
LSTM and GRU) as the alternative classifiers. They are all set to have one hidden layer. All
the classifiers share the same pretrained Word2Vec embedding.

• Translation Model: The LSTM under the Seq2Seq framework is set with 128 hidden units, which
are consistent to the surrogate classifiers.

• MTEA: Each task maintains a population of 100 solutions and the number of generations is set
as 50. Note that we find that these settings can strike a good balance between performance and
efficiency.

4.1.5 Metric and Statistical Test

To evaluate the ability for generating injection instances, we consider the following two metrics in our
experiments.

• The first metric is to the number of different bypassing test inputs. If a distinct test input
bypasses the WAF, it means the identification of a potentially new vulnerability [2].

• We also propose another metric to assess the number of test inputs based on the semantic
diversity clustering i.e., the number of test input clusters. To calculate this metric, we apply
Code-BERT [35] to encode the generated test inputs into feature vectors. Then, we apply
DBSCAN [36] to categorize these feature vectors as different clusters, with the number of clusters
serving as an indicator of semantic diversity.

Remark 8. We have experimented with two alternative methods to measure test input similarity:
Jaccard distance and Levenshtein distance, in addition to semantic similarity. However, we found
that these two distance metrics are not sufficiently powerful to capture deep semantic similarity. Con-
sequently, we opted for a more recent approach to compare deep semantics, namely pretrained language
models. Pretrained language models have been proven to be highly suitable for programming language
modeling. For instance, CodeBERT [35] is a language model pretrained on a large corpus of code,
including code related to injection tasks. Therefore, we decided to extract the semantics of the test
inputs using CodeBERT and cluster the semantics based on DBSCAN. The DBSCAN algorithm is
unsupervised and well-suited for identifying clusters. In contrast, the other two distance metrics are
inefficient and semantically irrelevant, which means they cannot accurately capture semantic diversity.
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4.2 Performance Comparison of DaNuoYi with the Corresponding Single-Task Counterparts

To mitigate potential bias, each experiment is repeated 21 independent runs with different random
seeds. To have a statistical interpretation of the significance of comparison results, we use the following
three statistical tests in our empirical study.

• Wilcoxon signed-rank test [37]: This is a non-parametric statistical test that makes no assump-
tion about the underlying distribution of the data. In particular, the significance level is set to
p = 0.05 in our experiments.

• Scott-Knott test [38]: Instead of merely comparing the raw metric values, we apply the Scott-
Knott test to rank the performance of different peer techniques over 21 runs on each test scenario.
In a nutshell, the Scott-Knott test uses a statistical test and effect size to divide the performance
of peer algorithms into several clusters. The performance of peer algorithms within the same
cluster is statistically equivalent. Note that the clustering process terminates until no split can
be made. Finally, each cluster can be assigned a rank according to the mean metric values
achieved by the peer algorithms within the cluster. In particular, the larger the rank is, the
better performance of the algorithm achieves.

• A12 effect size [39]: To ensure the resulted differences are not generated from a trivial effect,
we apply A12 as the effect size measure to evaluate the probability that one algorithm is better
than another. Specifically, given a pair of peer algorithms, A12 = 0.5 means they are equivalent.
A12 > 0.5 denotes that one is better for more than 50% of the times. 0.56 ≤ A12 < 0.64 indicates
a small effect size while 0.64 ≤ A12 < 0.71 and A12 ≥ 0.71 mean a medium and a large effect
size, respectively.

Note that both Wilcoxon signed-rank test and A12 effect size are also used in the Scott-Knott test for
generating clusters.

4.2 Performance Comparison of DaNuoYi with the Corresponding Single-Task Coun-
terparts

4.2.1 Methods

To the best of our knowledge, DaNuoYi is the first of its kind tool to generate test inputs for more
than one type of injection attack simultaneously. To answer RQ1, we plan to compare our proposed
DaNuoYi with its single-task counterparts which can only generate test inputs for a given type of
injection attack. There have been some tools to serve this purpose, such as [2] for SQLi, [9] for XMLi,
and [40] for XSSi. Unfortunately, these tools are neither open-source projects nor readily available.
In our experiments, we use SQLMap16, an open-source penetration testing tool for detecting and
exploiting SQLi flaws, as a peer method. In addition, we extract each task of the MTEA in DaNuoYi

as the peer method for automatic test input generation for a given type of injection attack (generally
denoted as STEA). They serve as resemblances to the existing single-task tools given that they share
similar learning and evolutionary search techniques. Since we use three different neural networks, i.e.,
RNN, LSTM, and GRU, as the surrogate classifiers, there are three different groups in the comparisons.

4.2.2 Results

Table 3 gives the comparison results of the total number of distinct test inputs, generated by different
test input generation methods, bypassing a given WAF under the same computational budget. Let
us first look into the comparison with SQLMap. The experimental results show that DaNuoYi and
its six single-task variants significantly outperform SQLMap on the subject WAFs, ModSecurity and
Ngx-Lua-WAF. Specifically, the number of test inputs found by SQLMap is only around 26% of those
found by DaNuoYi and around 40% of those obtained by the corresponding single-task variant of
DaNuoYi for SQLi. For the WAF Lua-Resty-WAF, although SQLMap’s performance improves, it is
still outperformed by DaNuoYi. As for the comparison results between DaNuoYi and its corresponding

16 https://sqlmap.org/
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4.2 Performance Comparison of DaNuoYi with the Corresponding Single-Task Counterparts
Table 3: The total number of bypassed test inputs (over 21 runs) obtained by SQLMap, CFG-based
method and STEA versus DaNuoYi with different surrogate classifiers under the same computational
budget.

WAF Injection
RNN LSTM GRU

SQLMap
STEA DaNuoYi STEA DaNuoYi STEA DaNuoYi

ModSecurity

SQLi 1798 (171)† 2232 (118) 1922 (93)† 2309 (102) 1844 (86)† 2127 (54) 663 (59) †

OSi 2622 (36)† 3424 (18) 2555 (35)† 3375 (20) 2578 (25)† 3375 (30)
PHPi 4015 (105)† 4790 (13) 4111 (53)† 4815 (14) 2578 (25)† 4800 (16)
XMLi 2010 (150)† 2337 (110) 1959 (155)† 2340 (103) 1876 (78)† 2188 (45)
XSSi 1836 (99)† 2830 (125) 2435 (201)† 3100 (284) 1786 (169)† 2546 (95)

HTMLi 997 (693)† 2937 (102) 742 (234)† 2852 (306) 1122 (561)† 2773 (232)

Ngx-Lua-WAF

SQLi 4610 (18)† 4984 (5) 4620 (16)† 4985 (6) 4602 (22)† 4984 (5) 153 (31) †

OSi 5000 (0) 5000 (0) 5000 (0) 5000 (0) 5000 (0) 5000 (0)
PHPi 2434 (969)† 3471 (468) 2170 (716)† 3433 (114) 2156 (318)† 3617 (311)
XMLi 4630 (26)† 4982 (6) 4625 (25)† 4984 (2) 4610 (12)† 4983 (4)
XSSi 947 (37)† 1762 (46) 715 (63)† 1631 (50) 952 (72)† 1808 (60)

HTMLi 1614 (180)† 3523 (56) 1744 (997)† 3599 (85) 2241 (166)† 3907 (105)

Lua-Resty-WAF

SQLi 2231 (124)† 2901 (118) 2338 (49)† 2965 (38) 2286 (94)† 2880 (50) 2334 (21) †

OSi 4514 (17)† 4942 (9) 4469 (66)† 4936 (14) 4322 (128)† 4907 (9)
PHPi 2789 (706)† 3967 (116) 2651 (736)† 4005 (53) 2372 (537)† 3918 (161)
XMLi 2373 (81)† 3034 (110) 2380 (138)† 2996 (78) 2288 (67))† 2935 (43)
XSSi 1542 (85)† 3048 (219) 2560 (529)† 3717 (115) 1893 (233)† 3296 (111)

HTMLi 1072 (843)† 3011 (136) 779 (256)† 2952 (221) 1158 (539)† 2771 (320)

Each cell shows the median value of the number of bypassing test inputs with the IQR value in
the parentheses.
† denotes that DaNuoYi is significantly better than the peer algorithm according to the Wilcoxon
rank-sum test at a 0.5 significance level.

Table 4: The total number of clusters of bypassing test inputs (over 21 runs) obtained by SQLMap and
STEA versus DaNuoYi with different surrogate classifiers under the same computational budget.

WAF Injection
RNN LSTM GRU

SQLMap
STEA DaNuoYi STEA DaNuoYi STEA DaNuoYi

ModSecurity

SQLi 1611 (131)† 1669 (119) 1621 (26)† 1745 (84) 1441 (246)† 1520 (209) 461 (50) †

OSi 1721 (180)† 2238 (142) 1661 (26)† 2143 (113) 1629 (47)† 2158 (112)
PHPi 2940 (206)† 3779 (114) 3438 (109)† 3813 (142) 3494 (82)† 3792 (142)
XMLi 1803 (199)† 2032 (117) 1609 (88)† 1821 (46) 1593 (123)† 1696 (93)
XSSi 825 (296)† 1714 (82) 737 (187)† 1468 (82) 900 (38)† 1540 (82)

HTMLi 988 (91)† 1177 (178) 995 (266)† 1038 (178) 1108 (188)† 1228 (214)

Ngx-Lua-WAF

SQLi 2950 (167)† 3264 (52) 3157 (117)† 3277 (61) 3121 (29)† 3265 (57) 68 (28) †

OSi 3188 (207)† 3328 (112) 3029 (29)† 3234 (86) 3149 (79)† 3304 (30)
PHPi 1802 (159)† 2579 (185) 1728 (100)† 2679 (124) 1848 (146)† 2894 (93)
XMLi 3577 (183) 3240 (72) 3214 (80)† 3328 (91) 3308 (9) 3324 (12)
XSSi 871 (82)† 1707 (210) 750 (82)† 1556 (212) 878 (82)† 1767 (221)

HTMLi 1576 (296)† 2570 (230) 1384 (196)† 2595 (276) 1868 (235)† 2849 (100)

Lua-Resty-WAF

SQLi 1781 (57)† 2309 (237) 1726 (95)† 2210 (102) 1668 (164)† 2016 (213) 1378 (76)†

OSi 2864 (218)† 3248 (35) 2861 (104)† 3206 (179) 2817 (86)† 3196 (199)
PHPi 1707 (100)† 2954 (16) 1509 (280)† 2927 (146) 1602 (218)† 2914 (24)
XMLi 1925 (202)† 2249 (238) 1790 (134)† 2452 (33) 1893 (177)† 2238 (98)
XSSi 1463 (244)† 2698 (60) 1272 (201)† 2406 (180) 1473 (147)† 2651 (168)

HTMLi 924 (200)† 1272 (239) 479 (248)† 1036 (45) 803 (90)† 1272 (196)

Each cell shows the median value of the number of bypassing test inputs with the IQR value in
the parentheses.
† denotes that DaNuoYi is significantly better than the peer algorithm according to the Wilcoxon
rank-sum test at a 0.5 significance level.
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4.2 Performance Comparison of DaNuoYi with the Corresponding Single-Task Counterparts
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102

Figure 9: Box plots of the distributions of the bypassed test inputs generated by DaNuoYi (denoted
as the black boxes) compared against the corresponding single-task counterparts (denoted as the red
boxes) with RNN, LSTM, GRU as the surrogate classifier, respectively, on ModSecurity over 21 runs
under the same computational budget. The numbers of bypassed injections are scaled by 102.
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102

Figure 10: Box plots of the distributions of the bypassed test inputs generated by DaNuoYi (denoted
as the black boxes) compared against the corresponding single-task counterparts (denoted as the red
boxes) with RNN, LSTM, GRU as the surrogate classifier, respectively, on Lua-Resty-WAF over 21
runs under the same computational budget. The numbers of bypassed injections are scaled by 102.
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Figure 11: Box plots of the distributions of the bypassed test inputs generated by DaNuoYi (denoted
as the black boxes) compared against the corresponding single-task counterparts (denoted as the red
boxes) with RNN, LSTM, GRU as the surrogate classifier, respectively, on Ngx-Lua-WAF over 21 runs
under the same computational budget. The numbers of bypassed injections are scaled by 102.
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Figure 12: The number of valid test inputs generated by DaNuoYi compared against the corresponding
single-task counterparts with RNN, LSTM, GRU as the surrogate classifier, respectively, during the
evolutionary process on ModSecurity over 21 runs under the same computational budget (shown as
error bars). The numbers of bypassed injections are scaled by 102.

single-task counterparts, it is clear to see that DaNuoYi is able to find more bypassed test inputs
(nearly up to 3.8×) for each type of injection attack on all three WAFs. The only exception is the
generation of test inputs for the OSi on Ngx-Lua-WAF where all methods have shown constantly the
same performance. This can be explained as the small search space in this scenario, which does not
pose any challenge to the search of valid test inputs. As shown in Fig. 9 to Fig. 11, we apply the box
plots to give a better statistical view upon the comparison results. From these figures, we can clearly
see that the number of valid test inputs identified by DaNuoYi is consistently larger than its single-task
counterparts.

In addition, to investigate the performance of DaNuoYi against its corresponding single-task coun-

g COLALab Report T 2023001 å 20 / 36



4.2 Performance Comparison of DaNuoYi with the Corresponding Single-Task Counterparts
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Figure 13: The number of valid test inputs generated by DaNuoYi compared against the corresponding
single-task counterparts with RNN, LSTM, GRU as the surrogate classifier, respectively, during the
evolutionary process on Lua-Resty-WAF over 21 runs under the same computational budget (shown
as error bars). The numbers of bypassed injections are scaled by 102.
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Figure 14: The number of valid test inputs generated by DaNuoYi compared against the corresponding
single-task counterparts with RNN, LSTM, GRU as the surrogate classifier, respectively, during the
evolutionary process on Ngx-Lua-WAF over 21 runs under the same computational budget (shown as
error bars). The numbers of bypassed injections are scaled by 102.
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Figure 15: Box plots of Scott-Knott test ranks of the number of bypassed test inputs achieved by
DaNuoYi with RNN, LSTM, and GRU as the surrogate classifier, respectively, on all WAFs and injec-
tion tasks compared against the corresponding STEAs. In particular, the x label from A to F represents
DaNuoYi-RNN, DaNuoYi-GRU, DaNuoYi-LSTM, STEA-RNN, STEA-GRU and STEA-LSTM, respectively.

terparts, we keep a record of the number of valid test inputs generated during the evolutionary process.
Note that SQLMap does not involve an evolutionary search process, it is thus not considered in this
study. As the trajectories are shown in Fig. 12 to Fig. 14, it is clear to see that DaNuoYi is able to
generate more valid test inputs all the time. It is also interesting to note that these single-task test
input generation methods can easily get stuck at the early stage of evolution; whereas the number of
test inputs generated by DaNuoYi steadily increases with the evolutionary process.

To have an overall comparison of DaNuoYi against the corresponding single-task counterparts for
all different types of injection attack w.r.t. all WAFs, we apply the Scott-Knott test and A12 upon
the collected comparison results. From the box plots of Scott-Knott test results shown in Figs. 15
and 16 along with the bar charts of A12 shown in Figs. 17 and 18, we find that DaNuoYi have shown
overwhelmingly better performance compared to the corresponding single-task counterparts.
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Figure 16: Box plots of Scott-Knott test ranks achieved by DaNuoYi based on the number of injection
clusters, respectively, on all WAFs and Injection tasks compared against the corresponding STEAs. In
particular, the x label from A to F represents DaNuoYi-RNN, DaNuoYi-GRU, DaNuoYi-LSTM, STEA-RNN,
STEA-GRU and STEA-LSTM, respectively.
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Figure 17: Percentage of the large, medium, small, and equal A12 effect size, respectively, when
comparing DaNuoYi with the corresponding STEA that uses same surrogate classifier on the number
of bypassed test inputs.
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Figure 18: Percentage of the large, medium, small, and equal A12 effect size, respectively, when
comparing DaNuoYi with the corresponding STEA that uses same surrogate classifier based on the
number injection clusters.

Response to RQ1: From the empirical results discussed in this subsection, we confirm the effec-
tiveness of DaNuoYi. Specifically, by leveraging the similarity of semantic knowledge across different
injection attacks, DaNuoYi can generate more valid test inputs compared to the corresponding single-
task counterparts, which easily get stuck at the early stage of evolution. In addition, DaNuoYi serves
the purpose of generating multiple types of injection attacks in a multi-task manner.

4.3 Investigation of the Impacts of the Mutation Operators in DaNuoYi
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Table 5: The total number of bypassed test inputs (over 21 runs) obtained by CFG-DaNuoYi, random
search (RAN) and rule-based injection search (RIS) versus DaNuoYi with different surrogate classifiers
under the same computational budget.

WAF Injection
RNN LSTM GRU

RIS RAN
CFG-DaNuoYi DaNuoYi CFG-DaNuoYi DaNuoYi CFG-DaNuoYi DaNuoYi

ModSecurity

SQLi 492 (24)† 2232 (118) 510 (17)† 2309 (102) 501 (16)† 2127 (54) 405 (23)† 808 (65)†

OSi 2167 (20)† 3424 (18) 2154 (33)† 3375 (20) 2168 (14)† 3375 (30) 2187 (10)† 3182 (23)†

PHPi 3820 (30)† 4790 (13) 3815 (24)† 4815 (14) 3801 (13)† 4800 (16) 3774 (23) † 4662 (29)†

XMLi 519 (20)† 2337 (110) 524 (13)† 2340 (103) 528 (12)† 2188 (45) 405 (23) † 781 (75)†

XSSi 1160 (35)† 2830 (125) 1202 (24)† 3100 (284) 1254 (36)† 2546 (95) 849 (38)† 1710 (88)†

HTMLi 1501 (37)† 2937 (102) 1517 (19)† 2852 (306) 1445 (31)† 2773 (232) 967 (9)† 1926 (67)†

Ngx-Lua-WAF

SQLi 4628 (11)† 4984 (5) 4618 (12)† 4985 (6) 4634 (29)† 4984 (5) 4456 (25)† 4960 (11)†

OSi 5000 (0) 5000 (0) 5000 (0) 5000 (0) 5000 (0) 5000 (0) 5000 (0) 5000 (0)
PHPi 2056 (19)† 3471 (468) 2066 (15)† 3433 (114) 2061 (29)† 3617 (311) 2074 (22)† 3297 (47)†

XMLi 4628 (6)† 4982 (6) 4621 (15)† 4984 (2) 4619 (25)† 4983 (4) 4456 (25)† 4953 (13)†

XSSi 1012 (26)† 1762 (46) 1010 (25)† 1631 (50) 1017 (26)† 1808 (60) 1175 (18)† 2120 (86)
HTMLi 2694 (36)† 3523 (56) 2667 (31)† 3599 (85) 2680 (15)† 3907 (105) 2746 (50)† 4010 (67)

Lua-Resty-WAF

SQLi 1164 (25)† 2901 (118) 1131 (39)† 2965 (38) 1132 (48)† 2880 (50) 1013 (19)† 1864 (50)†

OSi 4422 (7)† 4942 (9) 4423 (11)† 4936 (14) 4423 (16)† 4907 (9) 4434 (8)† 4916 (12)†

PHPi 2766 (22)† 3967 (116) 2773 (33)† 4005 (53) 2759 (40)† 3918 (161) 2767 (38)† 3911 (54)†

XMLi 1136 (25)† 3034 (110) 1157 (49)† 2996 (78) 1135 (39)† 2935 (43) 1013 (19)† 1854 (60)†

XSSi 2067 (75)† 3048 (219) 2027 (46)† 3717 (115) 2063 (33)† 3296 (111) 1817 (56)† 3072 (49)†

HTMLi 1530 (25)† 3011 (136) 1529 (35.5)† 2952 (221) 1509 (46)† 2771 (320) 1022 (17)† 1994 (76)†

Each cell shows the median value of the number of bypassing test inputs with the IQR value in
the parentheses.
† denotes that DaNuoYi is significantly better than the peer algorithm according to the Wilcoxon
rank-sum test at a 0.05 significance level.

Table 6: The total number of clusters of bypassed test inputs (over 21 runs) obtained by CFG-DaNuoYi,
random search (RAN) and rule-based injection search (RIS) versus DaNuoYi with different surrogate
classifiers under the same computational budget.

WAF Injection
RNN LSTM GRU

RIS RAN
CFG-DaNuoYi DaNuoYi CFG-DaNuoYi DaNuoYi CFG-DaNuoYi DaNuoYi

ModSecurity

SQLi 390 (69)† 1669 (153) 405 (29)† 1745 (144) 380 (60)† 1520 (94) 357 (54)† 628 (95)†

OSi 1544 (65)† 2238 (53) 1499 (80)† 2143 (36) 1511 (34)† 2158 (71) 1383 (32)† 2078 (68)†

PHPi 3093 (66)† 3779 (56) 3117 (63)† 3813 (41) 3078 (39)† 3792 (65) 2319 (35) † 3449 (74)†

XMLi 380 (62)† 2032 (149) 405 (25)† 1821 (130) 397 (37)† 1696 (85) 310 (41) † 718 (110)†

XSSi 799 (82)† 1714 (169) 841 (73)† 1468 (309) 792 (46)† 1540 (138) 573 (58)† 1312 (135)†

HTMLi 650 (84)† 1177 (142) 667 (57)† 1038 (320) 702 (79)† 1228 (273) 499 (26)† 943 (116)†

Ngx-Lua-WAF

SQLi 867 (38)† 3264 (34) 874 (41)† 3277 (17) 859 (73)† 3265 (42) 2764 (38)† 3070 (56)†

OSi 2881 (48)† 3328 (25) 2913 (16)† 3234 (30) 2936 (11)† 3304 (16) 2096 (9) 3277 (29)
PHPi 2019 (29)† 2579 (505) 1985 (35)† 2679(155) 1941 (45)† 2894 (350) 2074 (39)† 1881 (84)†

XMLi 875 (51)† 3240 (36) 913 (44)† 3328 (22) 873 (48)† 3324 (16) 732 (40)† 3154 (23)†

XSSi 983 (43)† 1707 (88) 992 (37)† 1556 (95) 926 (60)† 1767 (120) 795 (30)† 1906 (155)
HTMLi 728 (80)† 2570 (89) 711 (59)† 2595 (132) 750 (63)† 2849 (144) 1484 (97)† 2267 (103)

Lua-Resty-WAF

SQLi 867 (33)† 2309 (160) 874 (82)† 2210 (65) 859 (89)† 2016 (99) 755 (38)† 1514 (98)†

OSi 2881 (12)† 3248 (35) 2913 (36)† 3206 (47) 2936 (44)† 3196 (27) 2578 (27)† 3025 (45)†

PHPi 2119 (46)† 2954 (151) 2085 (54)† 2927 (88) 2041 (57)† 2914 (208) 1698 (72)† 2843 (99)†

XMLi 875 (42)† 2249 (155) 913 (95)† 2452 (126) 873 (75)† 2238 (78) 819 (35)† 1490 (114)†

XSSi 1683 (130)† 2698 (260) 1692 (81)† 2406 (192) 1626 (71)† 2651 (157) 1628 (101)† 2429 (96)†

HTMLi 728 (65)† 1272 (179) 711 (77)† 1036 (266) 750 (96)† 1272 (347) 693 (33)† 1080 (141)†

Each cell shows the median value of the number of bypassing test inputs with the IQR value in
the parentheses.
† denotes that DaNuoYi is significantly better than the peer algorithm according to the Wilcoxon
rank-sum test at a 0.05 significance level.

4.3.1 Methods

According to the experiments in Section 4.2.2, we have witnessed the effectiveness of our proposed
DaNuoYi for generating test inputs for different types of injection attacks. We argue that the six

g COLALab Report T 2023001 å 23 / 36



4.4 Investigation of the Impacts of the Surrogate Classifier in DaNuoYi

mutation operators developed in Section 3.4.3 are the driving force to create valid test inputs for the
underlying WAF. To understand the usefulness of these mutation operators in DaNuoYi, we develop
a variant, dubbed CFG-DaNuoYi, that uses a random sampling method based on the CFG w.r.t. the
underlying injection attack to replace the mutation operators in DaNuoYi. In particular, we investigate
CFG-DaNuoYi for all three surrogate classifiers considered in this paper.

4.3.2 Results

Table 5 and Table 6 show the performance of CFG-DaNuoYi under different WAFs by using three
surrogate classifiers. As we expected, the six mutation operators play a major role in generating test
cases. It is clear to see that the performance of DaNuoYi, without using the mutation operators, is
degraded in all scenarios. In particular, this variant even generates fewer valid test inputs than the
STEA methods in some cases, e.g., on SQLi, PHPi and XMLi. As shown in Table 5, CFG-DaNuoYi suffers
more than 50% performance loss on SQLi and XMLi in most of the scenarios. This indicates that the
corresponding WAFs are more vulnerable than those mutated SQLi and XMLi test inputs. On the
contrary, CFG-DaNuoYi generally outperforms the corresponding STEA methods on XSSi and HTMLi,
which are featured in a longer length of the injection string. This indicates that the bidirectional
translation can lead to more diversified test inputs so as to make up the missing mutation operators
to a certain extent.

Response to RQ2: From the empirical results discussed in this subsection, we confirm the impor-
tance of our proposed six mutation operators. They can bring more diversity into the MTEA thus
leading to an increased number of valid test inputs.

4.4 Investigation of the Impacts of the Surrogate Classifier in DaNuoYi

4.4.1 Methods

According to the experiments in Section 4.3.2, we have already validated the effectiveness of those
mutation operators for offspring reproduction in the MTEA of DaNuoYi. How to select the elite solutions
to either survive to the next generation or to construct the mating pool for offspring reproduction
is another important component of an evolutionary algorithm. In DaNuoYi, the selection process is
guided by the surrogate classifier that predicts the chance of a candidate test input for bypassing the
underlying WAF. To address RQ3, we replace this mechanism with a random selection, dubbed RAN.
More specifically, it randomly picks up the mating parents from the mating pool, so as the survival of
parents and offspring. Note that we still apply the bidirectional translation between different types of
injection attack within the mating pool.

4.4.2 Results

From the comparison results shown in Table 5 and Table 6, it is clear to see that the performance
of RAN is outperformed by our proposed DaNuoYi in all scenarios. In addition, STEA can even find
more valid test inputs than RAN in some cases such as the XMLi on ModSecurity and Lua-Resty-WAF.
This observation confirms the importance of elitism in an evolutionary algorithm. In other words,
without the guidance of an appropriate fitness function (i.e., the surrogate classifier in DaNuoYi), the
evolutionary search suffers from a lack of selection pressure thus is less effective. Another interesting
observation from our experiments is that the capability of generating valid test inputs is partially
related to the length of the characters w.r.t. the corresponding injection. More specifically, if an
injection string is long such as XSSi and HTMLi, a sufficient selection pressure becomes important
to guide the evolutionary search. This explains the better performance achieved by STEA w.r.t. RAN

on XSSi and HTMLi. On the other hand, if the length of an injection string is short such as OSi,
the translation between different types of injection attack can be highly beneficial to the generation
of valid test inputs.

g COLALab Report T 2023001 å 24 / 36



4.5 Investigation of the Impacts of CFG in DaNuoYi

Response to RQ3: From the comparison results discussed in this subsection, we confirm the im-
portance of the surrogate classifier as an alternative of the fitness function. It provides a sufficient
selection pressure to guide the evolutionary search process. This is critical for problems with a large
search space.

4.5 Investigation of the Impacts of CFG in DaNuoYi

4.5.1 Methods

As discussed in Section 3.1.1, the CFG used in the data gathering and profiling step is derived from
some existing injection attack examples. According the corresponding CFG for an injection type, the
rule-based injection search (RIS) method introduced in Section 3.1.1 plays as the source to seed some
initial test inputs for training the surrogate classifier. In this case, a natural question is whether this
RIS method guided by the CFG adequate to serve the purpose of test input generation? To address
RQ4, we use the CFG as the template to generate 100, 000 test inputs for each injection type. In
particular, we are mainly interested in the statistics of the number of non-duplicated test inputs and
those bypassing the underlying WAFs.

Table 7: The validity statistics of injection cases generated by rule-based injection search according
to a given CFG.

Injection type # of non-duplicated test inputs (percentage)
# of bypassed test inputs (success rate)

ModSecurity Ngx-Lua-WAF Lua-Resty-WAF

SQLi 25079 (25.1%) 2082 (8.3%) 24287 (96.8%) 5502 (21.9%)

OSi 6534 (6.5%) 2826 (43.3%) 6534 (100%) 5766 (88.2%)

PHPi 48093 (48.1%) 37593 (78.2%) 20366 (89.0%) 22880 (47.6%)

XMLi 25042 (25.0%) 2110 (8.4%) 24250 (96.8%) 4997 (20.1%)

XSSi 98931 (98.9%) 16978 (17.2%) 23419 (23.7%) 35824 (36.2%)

HTMLi 99535 (99.5%) 18371 (18.6%) 55439 (55.7%) 19510 (19.6%)

4.5.2 Results

According to the statistical results shown in Table 7, we can see that the percentage of the non-
duplicated test inputs is less than 50% for SQLi, XMLi, OSi, and PHPi. Especially for OSi, the
corresponding percentage is merely around 6.5%. However, it is surprising to see that the success
rates to bypass all three WAFs for OSi are very promising. This can be explained as the relatively
small search space of OSi as discussed in Section 4.2 that renders the test inputs generated by the
corresponding CFG duplicated. In contrast, the success rates of bypassing the WAFs for SQLi, XMLi
and PHPi vary significantly case by case. For example, both SQLi and PHPi experience a hard time
in ModSecurity of which the success rates of the bypassed test inputs generated by the corresponding
CFGs are less than 10%; whereas the success rates for Ngx-Lua-WAF are always high. On the other
hand, we can see that the percentage of non-duplicated test inputs generated by the RIS methods for
XSSi and HTMLi is extremely high with 98.9% and 99.5%, respectively. This can be explained as
the fact that both HTMLi and XSSi tend to be long strings leading to a large search space, i.e., an
exponentially increased number of potential combinations of different strings. Partially due to this
reason, the success rates to bypass all three WAFs for those generated test inputs are unfortunately
low. This suggests that the RIS can hardly find effective injection cases in a large search space.

In addition, we compare the RIS method with DaNuoYi under the same amount of computational
search budget for generating test inputs. Since the RIS method cannot work in a multi-task manner,
we run a test input generation routine for one injection type at a time, as done in STEA. From the
comparison results shown in Table 5, we find that the performance of the RIS method is significantly
worse than that of DaNuoYi in all cases, especially for ModSecurity and Lua-Resty-WAF, the relatively
more challenging WAFs. In particular, it is worth noting that the RIS method is comparable with STEA
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in many cases. This also supports the importance of our multi-task mechanism that complements each
other when generating different types of injection attacks. Let us look at the evolutionary trajectories
shown in Fig. 12 to Fig. 14, we can see that DaNuoYi keeps on generating more effective test inputs
after being seeded by the RIS as the initial test inputs. This observation confirms the importance and
usefulness of the follow-up evolution and translation in DaNuoYi.

Response to RQ4: There are two takeways from the experiments in this subsection. First, the
CFG itself can be used to generate test inputs for a given injection type. However, its effectiveness is
hardly guaranteed especially when handling a large search space. Second, by leveraging the semantic
information associated with each injection attack along with the multi-task paradigm, DaNuoYi can
develop more effective test inputs for different types of injection attacks simultaneously.

5 Threats to Validity

Threats to construct validity may raised from the way we measure the effectiveness of DaNuoYi. In
this work, we use the number of generated test inputs that bypass the WAF as the main metric,
following the suggestion from prior work [2]. To improve reliability of the conclusions, we have also
applied Wilcoxon rank-sum test to evaluate the statistical significance.

The parameter settings in the experiments, e.g., the dimension of the Word2vec and the number of
generations in MTEA, may cause threats to internal validity. Indeed, we acknowledge that a different
set of settings may lead to other results. However, we set these parameter values based on the results
of both automatic and manual hyper-parameter tuning.

To ensure external validity, we evaluate DaNuoYi on three widely used real-world WAFs and six
most prevalent types of injection attack. We have also run DaNuoYi under three alternative classifiers,
i.e., LSTM, RNN, and GRU. To mitigate evaluation bias, we repeat each experiment run 10 times.
Nonetheless, we do agree that additional subject WAFs are useful for future work.

6 Related Works

Over the past decade, several white-box, static and model-based approaches have been proposed for
testing injection vulnerability based on specific syntax, mainly target exclusively for SQLi. Among
others, Halfond and Orso [41] propose AMNESIA, which generates test input for SQLi based on static
code analysis. Similarly, Mao et al. [42] also seek to generate SQLi test inputs based on a pre-defined
finite automata. However, these approaches are restricted by the given rules and require full access to
the source code, which is what limits their testing ability as already shown in prior work [2, 9, 11].

In the industry, SQLMap is a well-known rule-based testing tool for SQLi, which is also applicable to
WAF. However, it is fundamentally different from DaNuoYi and difficult to be experimentally compared
in a fair manner, because:

• SQLMap focuses on SQLi only. DaNuoYi, in contrast, works on any type of injection attack.

• SQLMap stops as soon as it finds a test input that can bypass the WAF while DaNuoYi would
continue to evolve till the pre-defined resources are exhausted.

• Prior work (e.g., Liu et al. [11]) has shown that SQLMap is significantly inferior to single-task
learning and search-based testing methods, which are the peer methods that we have quantita-
tively compared for RQ1 and RQ2.

Other black-box, learning and search-based fuzzers for injection testing also exist. For example,
to discover SQLi vulnerabilities on WAF, Demetrio et al. [10] combine a random search fuzzer with
strongly-typed syntax for testing. Similarly, Appelt et al. [2, 8] leverage an evolutionary algorithm
supported by a learned surrogate model to generate test inputs. Liu et al. [11] propose DeepSQLi,
a method that uses techniques from NLP to learn and test SQLi vulnerabilities in web applications,
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including the WAFs. Edalat et al. [43] develops an Android-oriented SQL injection detection tool to
protect Android applications, while this tool aims at function-level attacks instead of multiple types
of injection attacks. Uwagbole et al. [44] propose to generate SQL injections by leveraging attack
patterns derived from existing SQL injections. However, this method relies on the reserved keywords
of SQL and is hard to adapt to other injection types. Eassa et al. [45] argues that the importance of
defending injection attack on NoSQL is underestimated and try to detect injections by developing an
independent module based on PHP. They share some of the same motivations as DaNuoYi such that
every test input has its own semantic information. For other injection types, Jan et al. [9] exploit
an evolutionary algorithm, empowered by a specifically designed distance function, to generate test
inputs for XMLi on WAF. Evolutionary fuzzing for testing XSS has also been explored [40].

On the other hand, many recent works focus on injection detection (e.g., code injection attack and
SQL injection detection). Zuech et al. [46] argues that using ensemble classifiers to predict potential
SQL injections. However, the test injections used in work are prepared as a dataset that is not
designed to find new injections. Thang [47] also adopts three existing dataset to predict the malicious
HTTP requests. Jahanshahi et al. [48] presents SQLBlock, a plugin for PHP & MySQL-based Web
applications, to prevent SQL injection without any modification on existing Web applications. And
the test case preparation method is not reusable for other injection types.

Several previous works have used CFGs to generate test inputs, but they have not specifically
focused on efficient selection and exploitation of injection vulnerabilities like DaNuoYi. For example,
Purdom’s algorithm [49] generates short sentences from a CFG but does not address injection attack
vulnerabilities. Havrikov et al. [29] introduced k-path coverage for test generation, but their approach
is not suitable for fitness evaluation due to efficiency limitations. Kifetew et al. [27] proposed using
grammar annotations for system-level test generation, achieving similar levels of coverage and fault
detection as learned probabilities, but their approach does not focus on detecting injection vulnera-
bilities. Soremekun et al. [50] developed strategies for learning input distributions for grammar-based
test generation, but their method may not precisely generate and identify test inputs that can ex-
pose vulnerabilities. Poulding et al. [26] proposed to optimize probability distributions for test input
generation, but do not directly address the detection and prevention of injection attacks. While the
aforementioned works contributed to testing and grammar-based systems, DaNuoYi’s focus on injection
vulnerabilities sets it apart and offers a promising approach for future research in this area. DaNuoYi

specifically addresses the efficient selection and exploitation of injection vulnerabilities through its use
of an MTEA and its focus on generating effective injection attacks for multiple types of vulnerabilities.
Although the literature focusing on context-free grammars usually share similar processes with Algo-
rithm ??, the details of the context-free grammars are quite different for various purposes, particularly
the aim of injection generation for multiple tasks, such as SQLi. Due to different application domains,
the CFGs in the previous literature cannot be easily adapted to the test input generation, to the best
of our knowledge. As a result, we collect simple but effective CFGs for six injection tasks to generate
test inputs. Nevertheless, we believe the insights from existing works on context-free grammar can
certainly improve our future works

As mentioned, the above work neither publishes the source code (or the code contains severe
errors) nor has readily available tools for direct quantitative comparisons. However, given the common
techniques that underpin those tools, they are the resemblances of the single-task counterparts we
evaluated for RQ1. It is clear that DaNuoYi differs from all the above work in the sense that:

• It works on any type of injection attack as opposed to one.

• It learns, translates and exploits the common semantic information across different types of
injection attack. This, as we have shown in Section 4, allows DaNuoYi to find more bypassing
test inputs on the WAF.
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7 Conclusion

In this paper, we propose DaNuoYi, a multi-task end-to-end fuzzing tool that simultaneously generates
test inputs for any type of injection attacks on WAF. DaNuoYi trains a classifier to predict the likelihood
of a test input bypassing the WAF, and a pair of translation models between any two types of injection
attack. These then equip the proposed multi-task evolutionary algorithm, which is the key component
that realizes the multi-tasking in DaNuoYi, with the ability to share the most promising test inputs
for different injection types. Through experimenting on three real-world open-source WAFs, three
classifiers, and six types of injection attack, we show that, in DaNuoYi, both the multi-task translation
and multi-task search are effective in handling and transferring the common semantic information
for different injection types, allowing it to produce up to 3.8× more bypassing test inputs than its
single-task counterparts.

Future opportunities from this work are fruitful, including extending DaNuoYi beyond injection
testing and a better synergy with the concept from reinforcement leaning.
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[16] C. Pinzón, J. F. de Paz, Á. Herrero, E. Corchado, J. Bajo, and J. M. Corchado, “idmas-sql:
Intrusion detection based on MAS to detect and block SQL injection through data mining,” Inf.
Sci., vol. 231, pp. 15–31, 2013.

[17] A. Makiou, Y. Begriche, and A. Serhrouchni, “Improving web application firewalls to detect
advanced SQL injection attacks,” in IAS’14: Proc. of the 10th International Conference on In-
formation Assurance and Security. IEEE, 2014, pp. 35–40.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp.
1735–1780, 1997.
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8 Additional Experiments

8.1 An Qualitative Study of the Translation in DaNuoYi

8.1.1 Methods

From the discussion in Section 4.2, we have confirmed the effectiveness and outstanding performance of
DaNuoYi for generating valid test inputs for different types of injection attacks. This subsection aims
to step further and to understand whether the semantic meanings between different types of injection
attacks have indeed been learned and exploited. In this section, we plan to qualitatively analyze some
examples selected from our experiments, as well as some that go beyond our expectations.

8.1.2 Results

By investigating the intermediately translated and evolved test inputs together with their parent
inputs in DaNuoYi, we found many examples similar to those listed in Table 1. This confirms that
creating tautology is the most common way in injection attacks. Nevertheless, we have also identified
some ‘unusual’ translations and evolution. In the following paragraphs, we will discuss some selected
examples.

Example 1 : from SQLi (’/**/or/**/‘1’=‘1’--) to XSS
(><s%43%72%49pt>%61%6c%65%72%74%28
%31%29</s%43ri%70%74><!--).

In the Example 1 , the parent input for SQLi is translated and evolved to another test input
for XSSi equivalent to ><script>alert(1)</script><!--, some of the characters are in ASCII
encoding. We notice that DaNuoYi did not pick up the semantic meaning of tautology attack (as in
the SQLi), but it does take the other piece of semantic information from the SQLi. In particular, the
previous statement is closed by ’ in SQLi, so that or ’1’=’1’ can be injected successfully. The same
operation is used in XSSi which using > to close the previous statement.

Example 2 : from OSi (0 ; sleep %20 1 |) to SQLi ()/**/;select sleep (2) #).

In the Example 2 , DaNuoYi learned that the function sleep %20 117 in OSi is similar to the
function sleep (2) in SQLi. In particular, it conducted two things when translating and evolving
such test input from SS to SQLi. First, it changes the separator from | to #. Then, it takes a
different syntax into account, i.e., the sleep function of SQLi is sleep() but not for the OSi. This
is a typical example in which some semantic knowledge is captured by DaNuoYi while being aware of
their syntactical differences.

Example 3 : from SQLi (‘)/**/&& not/**/false

or(’) to PHPi (O:7:‘‘Example":1:{s:3:‘‘var";
s:10:‘‘phpinfo();";}).

The Example 3 is one of the most surprising examples we found from the results of DaNuoYi. At
the first glance, the tautology in SQLi (due to the not false clause) may seem to be irrelevant to the
serialized code injection in PHPi. Yet, if we inspect closely, it is clear that the PHPi aims to access
some information through the phpinfo() call somewhere in the eval function. This matches with the
ultimate purpose of creating a tautology, i.e., accessing or revealing some unauthorized information by
creating something that is always true. This is beyond our expectation, as it suggests that DaNuoYi is
not only able to interpret the literal meaning in the test inputs, but also some of the semantics related
to the ultimate goal of an attack.

17%20 is a blank space in ASCII encoding.
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8.1 An Qualitative Study of the Translation in DaNuoYi

Table 8: The dataset summary for different injections used in three surrogate classifiers training(i.e.,
20, 000 injections for each surrogate classifier). We denote the number of instances(# of Inst.),
number of bypassed instances (# of By. Inst.), and number of blocked instances (# of Bl. Inst.)
for each injection type across different dataset types (training and testing).

Injection Dataset # of Inst. # of By. Inst. # of Bl. Inst.

SQLi
Training 14776 1404 13372
Testing 14065 6438 7627

XSSi
Training 56264 25571 30693
Testing 5032 2184 2848

XMLi
Training 14260 1375 12885
Testing 3564 346 3218

HTMLi
Training 58925 23956 34969
Testing 14731 6049 8682

OSi
Training 5032 2184 2848
Testing 1258 553 705

PHPi
Training 24973 16017 8956
Testing 6243 3942 2301
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8.1 An Qualitative Study of the Translation in DaNuoYi

Table 9: The number of instances in the injection translation datasets for SQLi, OSi, PHPi, XMLi,
XSSi, and HTMLi. The source and target injection indicate translation direction.

Source Injection Target Injection
Number of instances
Total Train Test

SQLi

OSi 24745 19795 4950
PHPi 24421 19536 4885
XMLi 30000 24000 6000
XSSi 30000 24000 6000

HTMLi 30000 24000 6000

OSi

SQLi 30000 24000 6000
PHPi 27786 22228 5558
XMLi 30000 24000 6000
XSSi 30000 24000 6000

HTMLi 15331 12264 3067

PHPi

SQLi 30000 24000 6000
OSi 30000 24000 6000

XMLi 30000 24000 6000
XSSi 30000 24000 6000

HTMLi 30000 24000 6000

XMLi

SQLi 30000 24000 6000
OSi 24745 19795 4950

PHPi 24421 19536 4885
XSSi 24421 19536 4885

HTMLi 30000 24000 6000

XSSi

SQLi 30000 24000 6000
OSi 30000 24000 6000

PHPi 30000 24000 6000
XMLi 30000 24000 6000

HTMLi 30000 24000 6000

HTMLi

SQLi 27678 22142 5536
OSi 8146 6516 1630

PHPi 25225 20179 5046
XMLi 27506 22004 5502
XSSi 27506 22004 5502
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