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Outline Why Multi-Objective Optimisation Important?

© Why Multi-Objective Optimisation Important? ® Many real-world applications involve more than one objective

Discrepancy of the same community/cluster — minimize
Discrepancy of different communities/clusters —s> maximize

GECCOle GECCOL [I1 M. Gong, et. al.,“Complex Network Clustering by Multiobjective Discrete Particle Swarm
\ 3 \ Optimization Based on Decomposition”, IEEE Trans. Evol. Comput., 18(1): 82-97,2014.
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Why Multi-Objective Optimisation Important?

© Many real-world applications involve more than one objective

|‘ accu racﬂ ‘ diversiﬂ ﬂ noveltﬂ

GECCO v& *. [2] M.Ribeiro, et. al., "Multi-Objective Pareto-Efficient Approaches for Recommender Systems”,
V‘A “ ACM Trans. Intelligent Systems and Technology, 5(4): 1-20,2014.
N
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® Basic Concepts
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Why Multi-Objective Optimisation Important?

®© Many real-world applications involve more than one objective

Shinkansen N700, bullet train [3] Exeter water distrib;ltlonrnetwork [4]

s .» [3] http://english.jr-central.co.jp/news/n200406 | 6/index.html
GECCQ ws [4] R. Farmani, et al.“Evolutionary multi-objective optimization in water distribution network design”,
S Engineering Optimization, 37(2): 167-183,2005 6

Multi-objective Optimisation Problem (MOP)

® Mathematical definition (continuous problem)

minimize F(x) = (f1(x),--, fm(x)T

subject to  g;(x) >a;, j=1,--,q
hj(x) =bj, j=q+1,---,¢
x e

¢ x:decision variable
* F:objective vector
* (X decision space

* () — R™: objective space

GECC \‘,s :
S 8
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Which Solution is Better?

® Pareto domination: x' < x°

« F(x!)is no worse than F(x?)in any objective, and
o F(x')is better than F(x?)in at least one objective
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® Pareto domination: x' < x?

« F(x!)is no worse than F(x?)in any objective, and
o F(x')is better than F(x?)in at least one objective

Region non-dominated with x
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Pareto-optimal Solutions = Best Trade-off Candidates

hi 1

objective space

® x is Pareto-optimal iff no solution dominates it
® Pareto set (PS): all Pareto-optimal solutions in decision space
GEicga%reto front (PF):image of PS in the objective space

P

Convergence and Diversity in EMO

© [@IAELENILE: non-dominated, close to the PF
o [BIIHI: even distribution along the PF

h
poor convergence
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Convergence and Diversity in EMO

© [@IAELENILS: non-dominated, close to the PF
o [BIIHI: even distribution along the PF

f2 fo

PF PF

fi — fi
poor diversity

|ba|anced convergence and diversityl h

Classic Methods vs Evolutionary Approaches

® Classic multi-objective optimisation [4]

One optimum solution

single-objective optimization problem, e.g.,
weighted sum

minimize g+ (xw) = ST i x )| 0

subject to x €

Estimate a relative

— importance vector | —=p

W= (Wi, W)

® Evolutionary multi-objective optimisation (EMO)
¢ set-based method Mating

Y

Reproduction

¢ approximate the PF at a time Selection
A
//
r's
\
) Environmental
Evaluation [ )
Selection
[4] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms”, Wiley, 2009. 12
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Convergence and Diversity in EMO

® : non-dominated, close to the PF

o BTN even distribution along the PF

f2 o

PF PF

fi — fi
poor diversity

|ba|anced convergence and diversityl h

Balance between convergence and diversity is the corner stone

Pareto-based EMO Methods

® Two-step procedure

* Rank the population by [s{elpllEeR=IgI e 5LE

»

dominance level, dominance count, ...

* Refine the dominance-based ranking by

»

crowding distance, k-th nearest neighbour, ...

Pt
sortin truncation
r—% Pol| =) -tk t
most crowded point
Q
Fs Fs

[5] K. Deb, et. al., “A fast and elitist multiobjective genetic algorithm: NSGA-II”, [EEE Trans. Evol. Comput., 6(2):
182-197,2002. 13



Indicator-based EMO Methods

® A (unary) quality indicator I is a function I : ¥ = 2% - R that
assigns a Pareto set approximation a real value.

Single-objective
Problem

Multi-objective
Problem

e — —

Indicator

NOTE: performance indicator should be dominance preserving!

i
reference point
i

least area contribution

worst solution /

[6] N. Beume, et. al., “SMS-EMOA: Multiobjective selection based on dominated hypervolume”, Eur | Oper Res.
181(3): 1653-1669,2007. 14
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® Simple MOEA/D
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General Framework of MOEA/D

® Basic idea

* Decomposition
» Decompose the task of approximating the PF into N subtasks, i.e. MOP to subproblems
» Each subproblem can be either single objective or multi-objective

* Collaboration
» Population-based technique: N agents for N subproblems.

» Subproblems are related to each other while N agents solve these subproblems in a
collaborative manner.

f2

Simple MOEA/D

® A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions P := {x' {il, a set of reference
points W := {w'}Y, and their neighborhood structure. Randomly
assign each solution to a reference point.

Step 2: Fori=1,---,N, do
Step 2.1: Randomly selects a required number of mating parents from
w*’s neighborhood.
Step 2.2: Use crossover and mutation to reproduce offspring x¢.

Step 2.3: Update the subproblems within the neighborhood of w* by

x©.

Step 3: If the stopping criteria is met, then stop and output the population.
Otherwise, go to Step 2.

[7] Q. Zhang et al., “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans.
Evol. Comput,, 11(6):712-731,2007. 17




Simple MOEA/D

® A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions P := {x‘}Y,, a set of reference
points W := {w'}}¥, and their neighborhood structure. Randomly
assign each solution to a reference point.

Step 2: Fori=1,---,N, do
Step 2.1: Randomly selects a required number of mating parents from
w*’s neighborhood.
Step 2.2: Use crossover and mutation to reproduce offspring x¢.

Step 2.3: Update the subproblems within the neighborhood of w* by

x°©.

Step 3: If the stopping criteria is met, then stop and output the population.
Otherwise, go to Step 2.

GECCOpb> [7] Q. Zhang et al., “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans.
Evol. Comput,, 11(6):712-731,2007. 17

Algorithm Settings

® Subproblem formulation

multiple objectives parameters single objective

(f1(5),++ , fn(x)) === [eransformation| = 4(x|,

A scalarizing function g : R™ — R that maps each objective vector
F(x) = (f1(x), ", fm(x)) € R™ to a real value g(F(x)) € R

weighted sum weighted Tchebycheff

m

g(x|w) = Zm,, X fi(x)

P g(xlw, ") = max wilfi(x - |
GECC i=1

913

Algorithm Settings

® Weight vector/Reference point Setting
¢ Use Das and Dennis’s method [8] to sample a set of uniformly distributed
weight vectors from a unit simplex
¢ w= (wla te 7wm)TWhere sz =1,weR™

i=1
* Each weight vector set a direction line (starting from the utopian point)
® Neighbourhood structure:
* Two subproblems are neighbours if their weight vectors are close.

* Neighbouring subproblems are more likely assumed to have similar property
(e.g. similar objective function and/or optimal solution).

0 02 04 06 08 1

S
GECCOlpb> [8] I. Das et.al.,“Normal-Boundary Intersection:A New Method for Generating the Pareto Surface in Nonlinear
Multicriteria Optimization Problems”, SIAM J. Optim, 8(3): 631-657, 1998. 18

Simple MOEA/D (cont.)

® A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions P := {x}}, a set of reference
points W := {w'}Y, and their neighborhood structure. Randomly
assign each solution to a reference point.

Step 2: Fori=1,---,N, do
Step 2.1: Randomly selects a required number of mating parents from
w*’s neighborhood.
Step 2.2: Use crossover and mutation to reproduce offspring x¢.

Step 2.3: Update the subproblems within the neighborhood of w* by

x©.

Step 3: If the stopping criteria is met, then stop and output the population.
Otherwise, go to Step 2.

GECC
20



Simple MOEA/D (cont.)

® A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions P := {x'}}, a set of reference
points W := {w'}Y, and their neighborhood structure. Randomly
assign each solution to a reference point.

Step 2: Fori=1,---,N, do
Step 2.1: Randomly selects a required number of mating parents from
w'’s neighborhood.
Step 2.2: Use crossover and mutation to reproduce offspring x°.
Step 2.3: Update the subproblems within the neighborhood of w* by

x¢

Step 3: If the stopping criteria is met, then stop and output the population.
Otherwise, go to Step 2.

GECC

Outline

® Current Developments
* Decomposition methods

GECC

Collaboration Among Different Agents

—_ PF
@ weight vector

Each agent i records the
best-so-far solution found

08 for its subproblem (memory)
. 06
pRay
0.4
0.2
= o>
0 02 04 06 08 1

® At each iteration, each agent does the following:

o MEUIRTEEEGY) (local selection): borrows solutions from its neighbours.
o [XSIR)[Wile]y: reproduce a new solution by applying reproduction operators
on its own solutions and borrowed solutions.

. (local competition):

» Pass the new solution among its neighbours (including itself).
GECC
2 » Replace the old solution by the new one if the new one is better than old one for its objective. )

Setting of Weight Vectors

© Drawbacks of the Das and Dennis’s method
* Not very uniform [9] Ham—1
¢ Number of weights is restricted to N = m—1

» N increases nonlinearly with m
» If Nis not large enough, all weight vectors will be at the boundary of the simplex

[9] Y-Y Tan, et al, “MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many
objectives”, Comput & OR, 40: 1648-1660,2013.
GECCOlp=t [10] K. Li, et al.,“An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition”,
22 ) |EEE Trans. Evol. Comput., 19(5): 694-716,2015. 23
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Setting of Weight Vectors

® Drawbacks of the Das and Dennis’s method

* Not very uniform [9]
H+m-1
¢ Number of weights is restricted to N =

» N increases nonlinearly with m
» If Nis not large enough, all weight vectors will be at the boundary of the simplex

simplex-lattice design uniform design [9]

[9] Y-Y Tan, et al, “MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many
objectives”, Comput & OR, 40: 1648-1660,2013.

|EEE Trans. Evol. Comput., 19(5): 694-716,2015. 23

Setting of Weight Vectors

® Drawbacks of the Das and Dennis’s method

* Not very uniform [9]

. ; . H+m-1
¢ Number of weights is restricted to N = 1
m—
» N increases nonlinearly with m

» If Nis not large enough, all weight vectors will be at the boundary of the simplex

I'st layer 2nd layer
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|EEE Trans. Evol. Comput., 19(5): 694-716,2015. 23
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Setting of Weight Vectors

® Drawbacks of the Das and Dennis’s method

* Not very uniform [9]
H+m-1
¢ Number of weights is restricted to N =

» N increases nonlinearly with m
» If Nis not large enough, all weight vectors will be at the boundary of the simplex

/

—~

|\
|

I'st layer Combination of two layers [10] 2nd layer

[9] Y-Y Tan, et al., “MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many
objectives”, Comput & OR, 40: 1648-1660,2013.

[10] K. Li, et al., “An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition”,
|EEE Trans. Evol. Comput., 19(5): 694-716,2015. 23
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Setting of Weight Vectors (cont.)

© Drawbacks of uniform distributed weight vectors
* Do NOT always lead to evenly distributed solutions
* Do NOT support all PF shapes
» Disconnected PF

» Inverted PF
»

[11]S.Jiang, et al.,“Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors”, ICNC’| |, 1260-1264,201 .
[12]Y.Qi, et al,, “MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014.

[13] M. Wy, et al., “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process
Regression”, GECCO'17, 641-648,2017.

[14] F. Gu, et al,, “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 22(2): 211-225,2018. 24
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Setting of Weight Vectors (cont.)

© Drawbacks of uniform distributed weight vectors
* Do NOT always lead to evenly distributed solutions
* Do NOT support all PF shapes

» Disconnected PF

» Inverted PF
»

oy folw! )
w —PF1
If the PF meets Z fi = 1, that’s fine; otherwise ... o
i=1 w3
i )
B ‘\ w
A A\ W
z fi

[11]S.Jiang, et al.,“Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors”, ICNC’| |, 1260-1264,201 .
[12]Y.Qi, et al,, “MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014.

[13] M. Wy, et al., “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process
Regression”, GECCO'17, 641-648,2017.

[14] F. Gu, et al,, “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 22(2): 211-225,2018. 24

Setting of Weight Vectors (cont.)

© Drawbacks of uniform distributed weight vectors
* Do NOT always lead to evenly distributed solutions
* Do NOT support all PF shapes

» Disconnected PF

» Inverted PF
»

m
Assume PF as fp -7 estimate p according to the number of non-dominated solutions
E P=

(1]

[12] ‘7( Qi,let al,, “MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014.

[13] M. Wy, et al., “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process
Regression”, GECCO'17, 641-648,2017.

[14] F. Gu, et al,, “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 22(2): 211-225,2018. 24




Setting of Weight Vectors (cont.) Setting of Weight Vectors (cont.)

© Drawbacks of uniform distributed weight vectors © Drawbacks of uniform distributed weight vectors
* Do NOT always lead to evenly distributed solutions * Do NOT always lead to evenly distributed solutions
* Do NOT support all PF shapes * Do NOT support all PF shapes
» Disconnected PF » Disconnected PF
» Inverted PF » Inverted PF
| »

Adaptive weight vectors adjustment
» Estimate the PF shape progressively according to
the current population
» Resample a set of weight vectors according to
the estimated PF
v Add new ones in feasible regions, and remove
useless ones from infeasible regions [12]
v Sampling from some estimated model, e.g. GP [13]
and SOM [14]
» Construct new subproblems with respect to
newly sampled weight vectors

[11]S.Jiang, et al.,“Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors”, ICNC’| |, 1260-1264,201 . [11]S.Jiang, et al.,“Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors”, ICNC’| |, 1260-1264,201 .
[12]Y.Qi, et al,, “MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. [12]Y.Qi, et al,, “MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014.

[13] M. Wy, et al., “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process [13] M. Wy, et al., “Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process
Regression”, GECCO'17, 641-648,2017. Regression”, GECCO'17, 641-648,2017.

[14] F. Gu, et al,, “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE [14] F. Gu, et al,, “Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 22(2): 211-225,2018. 24 Trans. Evol. Comput., 22(2): 211-225,2018. 24

Revisit Weighted Tchebycheff Revisit Weighted Tchebycheff

® Weighted Tchebycheff ® Weighted Tchebycheff
Drawback:

* non-smooth, weakly dominate solutio

+ non-smooth, weakly dominate solution [15]

* evenly distributed weights evenly do « evenly distributed weights evenly do NOT
i NOT lead to distributed solutions i lead to distributed solutions
i« might easily loose diversity H i might easily loose diversity
weighted Tchebycheff weighted Tchebycheff
g(x[w,2%) = max wilfilx— 2| g(x[w,2%) = max wilfi(x— 2|

25 [15] K. Miettinen, et al.,“Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999 2%
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Revisit Weighted Tchebycheff

© Weighted Tchebycheff

J2
\ w = (wy,ws)T
7

vy

+ non-smooth, weakly dominate solution [15] ;

+ evenly distributed weights evenly do NOT
weakly dominated solution lead to distributed solutions

../ * might easily loose diversity

h
weighted Tchebycheff

g(xlw,2") = max wilfi(x — 27|

GECCOeb
/ﬁj’{ [15] K. Miettinen, et al.,“Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999 2%
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© Weighted Tchebycheff

J2
\ w = (wy,ws)T
7

vy

+ non-smooth, weakly dominate solution [15] ;

« evenly distributed weights evenly do NOT
weakly dominated solution lead to distributed solutions

../ * might easily loose diversity

\w = (wy, wy)7

J1

Revisit Weighted Tchebycheff

® Weighted Tchebycheff
f2 5“ ............................... g

w = (wy, ws)" * non-smooth, weakly dominate solution [15]
7 « evenly distributed weights evenly do NOT

weakly dominated solution lead to distributed solutions
../ * might easily loose diversity

h
weighted Tchebycheff

g(xlw,2") = max wilfi(x — 77|

augmented scalarizing function

1<i<m w;

g, ) = (PO 13 (A
¢ i=1

/jm [15] K. Miettinen, et al., “Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999 2%

Revisit Weighted Tchebycheff (cont.)

© Weighted Tchebycheff

i« non-smooth, weakly dominate solutioné
* evenly distributed weights evenly do  }
NOT lead to distributed solutions
* might easily loose diversity

weighted Tchebycheff weighted Tchebycheff
* * * *
x|w,z") = max w;|fi(x— z; x|w,z") = max w;|fi(x— z;
glxlw,z%) = max wi|fi(x — 2] glxw,z%) = max wilfi(x — 2]
augmented scalarizing function
* m *
" N Ji(x =2 Ji(x = 2
g (x|w,2*) = max (FF—L) +p Y (F—)
1<i<m w; - w; /i
=1 1 GECC! >
/jm [15] K. Miettinen, et al.,“Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers, Boston, 1999 2 TR [12]Y.Qi, et al,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 27
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Revisit Weighted Tchebycheff (cont.)

© Weighted Tchebycheff

* non-smooth, weakly dominate solution
* evenly distributed weights evenly do
NOT lead to distributed solutions

* might easily loose diversity

weighted Tchebycheff -
g(xlw,2") = max wilfi(x— 2]

GECCOgb
/Q, [12]Y.Qi, et al,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 27
b d

Revisit Weighted Tchebycheff (cont.)

© Weighted Tchebycheff

* non-smooth, weakly dominate solution
* evenly distributed weights evenly do
NOT lead to distributed solutions

* might easily loose diversity

weighted Tchebycheff
g(x|w,z") = max w;|fi(x — z]|
1<i<m
1/wy 1/wn,
. . T
The search direction for w = (wy, - - - wm) is W= ( 1 ST
Zl 1 /wz 21:1 Jwi
GECCGleb
\ Y [12]Y.Qi, et al,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 27
rd

Revisit Weighted Tchebycheff (cont.)

© Weighted Tchebycheff

* non-smooth, weakly dominate solution
* evenly distributed weights evenly do
NOT lead to distributed solutions

* might easily loose diversity

weighted Tchebycheff -
g(xlw,2") = max wilfilx— 2]

GECCOgb
/Q, [12]Y.Qi, et al.,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 27
b d

Revisit Weighted Tchebycheff (cont.)

© Weighted Tchebycheff

* non-smooth, weakly dominate solution
* evenly distributed weights evenly do
NOT lead to distributed solutions

* might easily loose diversity

weighted Tchebycheff

g(x|w,z*) = max i|fl(x—z |

1<i<m w;
. 1/wy 1/wm 1
The search direction for w = (wy, - - - wm) is W= ( y =
Y l/wl 21:1 1/w;
GECCQleb
/&/ [12]Y.Qi, et al.,“MOEA/D with Adaptive Weight Adjustment”, Evol. Comput. 22(2): 231-264,2014. 27
rd
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Revisit Weighted Tchebycheff (cont.) Revisit Weighted Tchebycheff (cont.)

® Weighted Tchebycheff ® Weighted Tchebycheff

* non-smooth, weakly dominate solution'

« evenly distributed weights evenly do « evenly distributed weights evenly do
NOT lead to distributed solutions NOT lead to distributed solutions

* might easily loose diversity [16] i« might easily loose diversity [16] H

* non-smooth, weakly dominate solution'

X
X
weighted Tchebycheff weighted Tchebycheff
g(x[w,2%) = max wilfilx— 2| g(x[w,2%) = max wilfelx— 2| %
GECCOpb> [16] S. Jiang, et al,, “Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary Algorithms”, IEEE Trans. GECCOpb> [16] S. Jiang, et al,, “Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary Algorithms”, IEEE Trans.
/Q’ Evol. Comput., 22(2): 296-313,2018. 28 /?’ Evol. Comput., 22(2): 296-313,2018. 28
Revisit Weighted Tchebycheff (cont.) Revisit Weighted Tchebycheff (cont.)
® Weighted Tchebycheff ® Weighted Tchebycheff

* non-smooth, weakly dominate solution'
* evenly distributed weights evenly do « evenly distributed weights evenly do
NOT lead to distributed solutions

NOT lead to distributed solutions H
* might easily loose diversity [17] i might easily loose diversity [17] H

* non-smooth, weakly dominate solution'

Pareto adaptive scalarizing to choose p

minimize p, peP

subject to  Vx* : g%d(x*|w,z*, p)
weighted Lp scalarizing [12] weighted Lp scalarizing [12] < gv4(xF|w,z*, p)

g xlw) = (3 N(fi(x) — 2)7)7 g (xw) = (3 Nillfi(x) = 2)7)?

I=1 I=1
1 1
)\i:(;),le )\i:(;),le
GECC [17] R. Wang, et al., “Decomposition-Based Algorithms Using Pareto Adaptive Scalarizing Methods”, IEEE Trans. Evol. GECC [17] R. Wang, et al., “Decomposition-Based Algorithms Using Pareto Adaptive Scalarizing Methods”, IEEE Trans. Evol.
N Comput., 20(6): 821-837,2016. 29 ) Comput., 20(6): 821-837,2016. 29
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Revisit Weighted Tchebycheff (cont.)

© Weighted Tchebycheff

i+ non-smooth, weakly dominate solution }
« evenly distributed weights evenly do
NOT lead to distributed solutions
* might easily loose diversity [17]

Pareto adaptive scalarizing to choose p

minimize p, pe€ P

subject to  Vx* : gd(x*|w,z*, p)
weighted Lp scalarizing [12] < gwﬂl(x’ﬂw7 z*,p)

g d(xlw) = O Nl fi(x) — 2)P)»
I=1
‘ Ai = (le')vp >1

[17] R.Wang, et al., “Decomposition-Based Algorithms Using Pareto Adaptive Scalarizing Methods”, IEEE Trans. Evol.
Comput., 20(6): 821-837,2016. 29

Revisit Weighted Sum

®© Weighted sum

+ only useful for convex PFs while not }
all Pareto-optimal solutions can be
found if the PF is not convex.

weighted sum

g(x|lw) = Zwi x fi(x)

i=1

GECCOe>
N\ 30
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Revisit Weighted Sum

® Weighted sum

+ only useful for convex PFs while not }
all Pareto-optimal solutions can be
found if the PF is not convex.

weighted sum

g(x|w) = Zwi x fi(x)

i=1

30

Revisit Weighted Sum

®© Weighted sum

* The superior region is constantly 1/2,
whereas itis 1/2™ for the Lp scalarizing

* MOEA/D with weighted sum have :
better convergence (given convex PF)

.................

weighted sum

g(x|w) = Zwi x fi(x)

i=1

[18] R.Wang, et al,, “Localized Weighted Sum Method for Many-Objective Optimization”, |EEE Trans. Evol. Comput.,
22(1):3-18,2018. 31



Revisit Weighted Sum

®© Weighted sum

* The superior region is constantly 1/2,
whereas it is 1/2™ for the Lp scalarizin,
* MOEA/D with weighted sum have

(

better convergence

iven convex PF)

weighted sum

g(x|w) = Zwi x fi(x)

i=1

[18] R.Wang, et al,, “Localized Weighted Sum Method for Many-Objective Optimization”, |EEE Trans. Evol. Comput.,
22(1):3-18,2018. 31

Boundary Intersection

® Penalty-Based Intersection (PBI) [7]
g(x|w,z*) = dy + 0ds
_IPG) - 2)Tw]
Wl

d2 = ||F(X) - (Z* aF d1

dy

w

)l

[[wll

* di ‘measures’ the convergence

= can be replaced by other measure [19]

* d2‘measures’ the diversity
= can be replaced by angle [19,20]
* ) controls the contour and trade-offs

[7] Q. Zhang and H. Li,“MOEA/D:A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans. Evol. Comput., | 1(6):
712-731,2007.

[19] R. Cheng, et al.,“A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization”, |[EEE Trans. Evol. Comput.,
20(5):773-791,2016.

[20] Y. Xiang, et al.,“A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization”, IEEE Trans. Evol.
Comput,, 21(1): 131-152,2017.

[21] H. Sato, “Analysis of inverted PBl and comparison with other scalarizing functions in decomposition based MOEAs”, ]. Heuristics,
21:819-849,2015. 32
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® Weighted sum

* The superior region is constantly 1/2,

whereas itis 1/2™ for the Lp scalarizing
* MOEA/D with weighted sum have :
better convergence (given convex PF)

Localised weighted sum

weighted sum

g(x|w) = Zwi x fi(x)

i=1

[18] R.Wang, et al,, “Localized Weighted Sum Method for Many-Objective Optimization”, |EEE Trans. Evol. Comput.,
22(1):3-18,2018. 31

Boundary Intersection

® Penalty-Based Intersection (PBI) [7]
g(x|w,z*) = dy + 0ds

(PG — 27w
Tl

d2 = ||F(X) - (Z* aF d1

dy

w

)l

[[wll

* di ‘measures’ the convergence
= can be replaced by other measure [19]
* d2‘measures’ the diversity
= can be replaced by angle [19,20]
* ) controls the contour and trade-off:

Inverted PBI [21]

712-731,2007.

[19] R. Cheng, et al.,“A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization”, |[EEE Trans. Evol. Comput.,
20(5):773-791,2016.

[20] Y. Xiang, et al.,“A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization”, IEEE Trans. Evol.
Comput,, 21(1): 131-152,2017.

[21] H. Sato, “Analysis of inverted PBl and comparison with other scalarizing functions in decomposition based MOEAs”, ]. Heuristics,
21:819-849,2015. 32
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Boundary Intersection Constrained Decomposition

® Penalty-Based Intersection (PBI) [7] ®© The improvement region of WS, TCH and PBl is too large

¢ Gives a solution large chance to update many agents: hazard to diversit
g(xw,z") = di — 6dy g P Y a8 y

_ NP G) — 2w

Wl

dy
w

ds = |F(x) — ("¢ + dy —
1F(x) — ( IIWII)”

* di ‘measures’ the convergence

= can be replaced by other measure [19] * Add a constraint to the subproblem to reduce the improvement region [22]

i« dh‘measures’ the diversity H
Inverted PBI [21 H H P *
(211 = can be replaced by angle [19,20] H minimize g(wa, Z ) ,
* § controls the contour and trade-offs subject to (a*, F(x) —z*) < 0.50"
....................................................................... i
[7] Q. Zhang and H. Li,“MOEA/D:A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans. Evol. Comput., | 1(6):
712-731,2007.

[19] R. Cheng, et al.,“A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization”, IEEE Trans. Evol. Comput.,
20(5):773-791,2016.

[20] Y. Xiang, et al.,“A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization”, IEEE Trans. Evol.
Comput,, 21(1): 131-152,2017.

[21] H. Sato, “Analysis of inverted PBl and comparison with other scalarizing functions in decomposition based MOEAs”, ]. Heuristics,

[22] L.Wang, et al.,“Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm”, IEEE

21:819-849,2015. 32 Trans. Evol. Comput., 20(3): 475-480, 201 6. 33
Constrained Decomposition Subproblem Can Be Multi-Objective ...
®© The improvement region of WS, TCH and PBl is too large © MOP to MOP (M2M)
* Gives a solution large chance to update many agents: hazard to diversity * Decompose a MOP into K (K > 1) constrained MOPs [23].

minimize F(x) = (fi(x), -, fm(x))T
subject to x € ()

* Add a constraint to the subproblem to reduce the improvement region [22]

minimize g(x|w,z*)
subject to (al, F(x) — z*) < 0.56°

[22] L.Wang, et al.,“Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm”, IEEE
Trans. Evol. Comput., 20(3): 475-480, 2016. 33

[23] H. Liu, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
Subproblems”, I[EEE Trans. Evol. Comput., 18(3): 450-455,2014. 34
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Subproblem Can Be Multi-Objective ...

© MOP to MOP (M2M)
* Decompose a MOP into K (K > 1) constrained MOPs [23].
minimize F(x) = (f1(x),---
subject to x € )
F(X) € Qp

minimize F(x) = (f1(x),- - ,fm(x))T s fm(x))

subject to x € )

GECCOlp=t [23] H. Liy, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
. Subproblems”, I[EEE Trans. Evol. Comput., 18(3): 450-455,2014. 34
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Subproblem Can Be Multi-Objective ...

© MOP to MOP (M2M)
* Decompose a MOP into K (K > 1) constrained MOPs [23].
minimize F(x) = (f1(x),---
subject to x € )
F(X) € Qp

minimize F(x) = (f1(x), -, fm(x))T s fm (%))

subject to x € )

0 = {F(x) € R™|{F(x), w') < (F(x),w’) for any j =1, K}

0
0 02 04 06 08 1

f
GECCOlp=t [23] H. Liy, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
. Subproblems”, I[EEE Trans. Evol. Comput., 18(3): 450-455,2014. 34

P

Subproblem Can Be Multi-Objective ...

© MOP to MOP (M2M)
* Decompose a MOP into K (K > 1) constrained MOPs [23].

inimi = T minimize F(X) = (fl(x)7"' afm(x))T
minimize  F(x) = (10, fn(x)) et 2
subject to x € ) F(x) € Q%
QO = {F(x) € R™[(F(x),w') < (F(x),w) forany j=1,--- K}
GE;@ [23] H. Liu, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
: Subproblems”, I[EEE Trans. Evol. Comput., 18(3): 450-455,2014. 34
Subproblem Can Be Multi-Objective ...
o MOP to MOP (M2M)
* Decompose a MOP into K (K > 1) constrained MOPs [23].
inimi — T minimize  F(x) = (f(x),-- -, fm(x))"
minimize  F(x) = (1(),+, fn(x)) et 2
subject to x € ) F(x) € Q%
QO = {F(x) € R™[(F(x),w') < (F(x),w) forany j=1,--- K}
S
2 Qs
0
0 02 04 06 08 1
f
GE;@ [23] H. Liu, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
: Subproblems”, I[EEE Trans. Evol. Comput., 18(3): 450-455,2014. 34

P

924



Subproblem Can Be Multi-Objective ...

© MOP to MOP (M2M)
* Decompose a MOP into K (K > 1) constrained MOPs [23].
minimize F(x) = (f1(x),---
subject to x € )
F(X) € Qp

minimize F(x) = (f1(x),- - ,fm(x))T s fm(x))

subject to x € )

O = {F(x) € R™|(F(x),w') < (F(x),w’) forany j=1,---, K}

* Each agent is an EMO algorithm.

Qy
0 2s
0 02 04 06 08 1
h
GECC [23] H. Liy, et al., “Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective
Subproblems”, I[EEE Trans. Evol. Comput., 18(3): 450-455,2014. 34
b d

Outline

® Current Developments

e Search methods

GECC

Dynamic Resource Allocation

® Are all subproblems equally important?
* Some regions in the PF/PS are easier than the others.
* Different agents require different amounts of computational resources.

®© Dynamic resource allocation (DRA) in MOEA/D [24]

* Utility function to measure the likelihood of improvement
» e.g.fitness improvement over AT
o s
6 ar) —g'(x)
9 (X¢—at)

¢ Allocation mechanism
» e.g. probability of improvement
; ul + e
max;j—1,.. n{ul} +e€

GECC [24] A. Zhou, et al, “Are All the Subproblems Equally Important? Resource Allocation in Decomposition-Based

: Multiobjective Evolutionary Algorithms”, IEEETEVC, 20(1): 52-64,2016. 35
b d

Search Methods

® Offspring reproduction in MOEA/D
* Neighbourhood defines where to find mating parents
* Any genetic operator can be used
» GA [7], DE [25], PSO [26], guided mutation [27], ...

[7] Q. Zhang et al., “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition”, IEEE Trans. Evol. Comput.,
11(6):712-731,2007.

[25] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II”, IEEE
Trans. Evol. Comput., 13(2): 284-302, 2009.

[26] S. Martinez, et al.,“A multi-objective PSO based on decomposition, in GECCO 201 1.

[27] C. Chen, et al.,“Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization”, CEC 2009

GECC
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Search Methods

® Offspring reproduction in MOEA/D
* Neighbourhood defines where to find mating parents
* Any genetic operator can be used
* Any local search can be used

» simulated annealing [28], interpolation [29], tabu search [30], GRASP [31],
Nelder-Mead [32], ...

[28] H. Li, et al., “An adaptive evolutionary multi-objective approach based on simulated annealing”, Evol. Comput. 19(4):
561-595,2011.

[29] K. Sindhya, “A new hybrid mutation operator for multiobjective optimization with differential evolution”, Soft Comput.,

15:2041-2055,201 1.

[30] A. Alhindi, et al.,“Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation”, UKCI 2014.

[31] A.Alhindi, et al.,“MOEA/D with Tabu Search for multiobjective permutation flow shop scheduling problems”, CEC 2014.

[32] H. Zhang, et al., “Accelerating MOEA/D by Nelder-Mead method”, CEC 2017. 38 GECC!

Search Methods (cont.)

® Using Probability Collective in MOEA/D

* Instead of a point-based search, probability
collective aims to fit a probability distribution
highly peaked around the neighbourhood of PS

qu

X2

X1

» Fit a2 Gaussian mixture model using solutions
associated with each subproblem

» Search is based one sampling or local search
upon the fitted model

[38] D. Morgan, et al., “MOPC/D: A new probability collectives algorithm for multiobjective optimisation”,
GECC! MCDM’13,17-24,2013 39
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earch Methods

Offspring reproduction in MOEA/D

Neighbourhood defines where to find mating parents

Any genetic operator can be used
Any local search can be used
Probabilistic model can be used
» Memory
= Each agent records historical information, i.e. elites
» Model building and solution construction

= Each agent can build ‘local model’, e.g. ACO [33], EDA [34],
cross entropy [35], graphical model [36], CMA-ES [37],
based on memory of itself and its neighbour

= New solutions are sampled from these models
= NOTE: too many models may be too expensive
» Memory update

= Offspring update each agent’s and its neighbour’s memory

[33] L. Ke, et al.,,“MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and Ant Colony”, IEEE Trans.
Cybern., 43(6): 1845-1859,2013.

[34] A. Zhou, et al., “A Decomposition based Estimation of Distribution Algorithm for Multiobjective Traveling Salesman
Problems”, Computers & Mathematics with Applications, 66(10): 1857-1868,2013.

[35] I. Giagkiozis, et al.,“Generalized decomposition and cross entropy methods for many-objective optimization”, Inf. Sci., 282:
363-387,2014.

[36] M. de Souza, et al., “MOEA/D-GM: Using probabilistic graphical models in MOEA/D for solving combinatorial optimization
problems”, arXiv:1511.05625,2015.

[37] H. Li, et al.,“Biased Multiobjective Optimization and Decomposition Algorithm”, IEEE Trans. Cybern., 47(1): 52-66, 2016.

Search Methods (cont.)

® Expensive optimisation
* Building surrogate model for expensive objective function

» e.g. Gaussian process (Kriging) [39, 40], RBF [41], ...

[39] Q. Zhang, et al., “Expensive Multiobjective Optimization by MOEA/D with Gaussian Process Model”, IEEE Trans.
Evol. Comput., 14(3): 456-474,2010.

[40] T. Chugh, et al., “A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally
Expensive Many-Objective Optimization”, 22(1): 129-142,2018.

[41] S. Martinez, et al., “MOEA/D assisted by RBF Networks for Expensive Multi-Objective Optimization Problems”,
GECCO 2013. 4



Search Methods (cont.) Outline

© Adaptive operator selection as a multi-armed bandits [39]
e Strike the balance between the exploration and exploitation

» Exploration: acquire new information (diversity)

» Exploitation: capitalise on the available knowledge (convergence) o Current Developments

EA . AOS
i Credit Register ) Couab?mion )
Operator ' Operator » Mating selection
SO e S . Operator |
Application : Selection V\Q{K
! Operator 2
|
I
A ——— da'(,e cee
W
|mPa(?t — Qredlt /V/V Operator K
Evaluation Assignment

GECC [39] K. Li, et al, “Adaptive operator selection with bandits for multiobjective evolutionary algorithm based on GECCOlpb>
decomposition”, IEEE Trans. Evol. Comput., 18(1): |14-130,2014. 4 ) 43
b d b d
Mating Selection Mating Selection
® Mating selection: how to select parents for offspring reproduction? ® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ... * Tournament selection, genotype neighbours, ...
* MOEA/Ds leverage the neighbourhood structure of weight vectors * MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure »  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D) » Select mating parents purely from neighbouring agents (simple MOEA/D)
e » Focusing on the neighbourhood is too 12 » Focusing on the neighbourhood is too
T much exploited 1 much exploited
08 FRe s » Give some chance to explore in the 0.8 » Give some chance to explore in the
: A ] . : .
gl /.”\:2:,..1 whole population [25] CI whole population [25]
0alis . 0.4
0.2
0
GECC [25] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA- GECC [25] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
1I”, IEEE Trans. Evol. Comput., |3(2): 284-302, 2009. 44 N 1I”, IEEE Trans. Evol. Comput., |3(2): 284-302, 2009. 44
b d b d
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Mating Selection

® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ...
* MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

» Focusing on the neighbourhood is too
much exploited

» Give some chance to explore in the
whole population [25]

[25] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
1I”, IEEE Trans. Evol. Comput., |3(2): 284-302, 2009. 44

Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ...
* MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)
» Large neighbourhood makes the search globally
» Small neighbourhood encourages local search

0 02 04 06 08 1 12
h

[27] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., |6(3): 442-446,2013. 45
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Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ...

* MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

0 02 04 06 08 1 12
h

[27] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., |6(3): 442-446,2013. 45

Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ...
* MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)
» Large neighbourhood makes the search globally
» Small neighbourhood encourages local search
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h

[27] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., |6(3): 442-446,2013. 45




Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ...
* MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)
» Large neighbourhood makes the search globally
» Small neighbourhood encourages local search

2
Build an ensemble of neighbourhood sizes
and chooses the appropriate one based
on their historical performance. [27]
0 02 04 06 08 1 12
h
GECCOlpb> [27] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., 16(3): 442-446,2013. 45

Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ...
* MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Take crowdedness into consideration [28]
» Compute the niche count of each solution
within agent i’s neighbour
» Select mating parents from outside of the
neighbour if solutions are overly crowded

GECCOlpb> [28] S. Jiang, et al., “An improved multiobjective optimization evolutionary algorithm based on decomposition for
complex Pareto fronts”, IEEE Trans. Cybern, 46(2): 421-437,2016. 46

Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ...
* MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)
» Large neighbourhood makes the search globally
» Small neighbourhood encourages local search

Build an ensemble of neighbourhood sizes
and chooses the appropriate one based
on their historical performance. [27]

0 02 04 06 08 1 12
h

GECCOlpb> [27] S. Zhao, et al., “Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood
Sizes”, IEEE Trans. Evol. Comput., |6(3): 442-446,2013.

Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ...
* MOEA/Ds leverage the neighbourhood structure of weight vectors

»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

Take crowdedness into consideration [28]
» Compute the niche count of each solution
within agent i’s neighbour
» Select mating parents from outside of the
neighbour if solutions are overly crowded

GECCOlpb> [28] S. Jiang, et al., “An improved multiobjective optimization evolutionary algorithm based on decomposition for
S complex Pareto fronts”, IEEE Trans. Cybern, 46(2): 421-437,2016.
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Mating Selection (cont.)

® Mating selection: how to select parents for offspring reproduction?
* Tournament selection, genotype neighbours, ...

* MOEA/Ds leverage the neighbourhood structure of weight vectors
»  Assumption: neighbouring subproblems have similar structure
» Select mating parents purely from neighbouring agents (simple MOEA/D)

igh
Population

Take crowdedness into consideration [28]
» Compute the niche count of each solution
within agent i’s neighbour
» Select mating parents from outside of the
neighbour if solutions are overly crowded

[28] S. Jiang, et al., “An improved multiobjective optimization evolutionary algorithm based on decomposition for
complex Pareto fronts”, IEEE Trans. Cybern, 46(2): 421-437,2016. 46

Replacement

© Replacement: update the parent population
* Steady-state evolution model (oracle MOEA/D)
* Update as many neighbouring subproblems as it can (oracle MOEA/D)

» The replacement strategy of the oracle MOEA/D
is too greedy

» Offspring is only allowed to replace a limited
number of parents [26]
* Pros: Good for diversity
* Cons: convergence may be slow

o Weight V¢

[26] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
11, IEEE Trans. Evol. Comput., |3(2): 284-302, 2009. 48
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Replacement

© Replacement: update the parent population
* Steady-state evolution model (oracle MOEA/D)
* Update as many neighbouring subproblems as it can (oracle MOEA/D)

» The replacement strategy of the oracle MOEA/D
is too greedy

» Offspring is only allowed to replace a limited
number of parents [26]
* Pros: Good for diversity
* Cons: convergence may be slow

[26] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-
1I”, IEEE Trans. Evol. Comput., |3(2): 284-302, 2009. 48

Replacement (cont.)

® Matching-based selection [29,30]
* Subproblems and solutions are two sets of agents
* Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one?

selection — matching

[29] K. Li, et al, “Stable Matching Based Selection in Evolutionary Multiobjective Optimization”, IEEE Trans. Evol.
Comput, 18(6):909-923,2014.

[30] M.Wu, et al,, “Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization”,
IEEE Trans. Evol. Comput., 21 (4): 554-568,2017. 49

Replacement (cont.)

® Matching-based selection [29,30]
* Subproblems and solutions are two sets of agents
* Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one?

[29] K. Li, et al, “Stable Matching Based Selection in Evolutionary Multiobjective Optimization”, IEEE Trans. Evol.
Comput, 18(6):909-923,2014.

[30] M.Wu, et al,, “Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization”,
IEEE Trans. Evol. Comput., 2| (4): 554-568,2017. 49

Replacement (cont.)

® Matching-based selection [29,30]
* Subproblems and solutions are two sets of agents
* Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one?
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Replacement (cont.)

® Matching-based selection [29,30]
* Subproblems and solutions are two sets of agents
* Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one?

selection — matching

[29] K. Li, et al, “Stable Matching Based Selection in Evolutionary Multiobjective Optimization”, IEEE Trans. Evol.
Comput, 18(6):909-923,2014.
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Replacement (cont.)

® Matching-based selection (extension) [31]
¢ |dentify the inter-relationship between subproblems and solutions

» Find the related subproblems to each solution (e.g. fitness)
»  Find the related solutions for each subproblem (e.g. closeness)

¢ Selection mechanism: each subproblem chooses its favourite solution

wl

[31] K. Li, et al., “Interrelationship-based selection for decomposition multiobjective optimization”, |[EEE Trans. Cybern.
45(10): 20762088, 2015. 50

Replacement (cont.)

® Matching-based selection [29,30]
* Subproblems and solutions are two sets of agents
* Subproblems ‘prefer’ convergence, solutions ‘prefer’ diversity

choose which one?

» A unified perspective to look at selection

» A generational evolution model for MOEA/D
v What is convergence?
= Aggregation function, ...
v What is diversity?
= Perpendicular distance, angle ...
v Mechanism to match
= Stable matching, ...

selection — matching

[29] K. Li, et al, “Stable Matching Based Selection in Evolutionary Multiobjective Optimization”, IEEE Trans. Evol.
Comput, 18(6):909-923,2014.

[30] M.Wu, et al,, “Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization”,
IEEE Trans. Evol. Comput., 2| (4): 554-568,2017. 49

Replacement (cont.)

® Matching-based selection (extension):
¢ Global replacement [32]
»  If the newly generated offspring is way beyond the current neighbourhood ...
»  Find the ‘best agent’ (i.e. subproblem) for the newly generated offspring
» Compete with solutions associated with this ‘best agent’
+ MOEA/D-DU [33]

» Update the newly generated offspring’s ‘nearest’ subproblems

0 02 04 06 08 1 1.2

N
[32] Z.Wang, et al.,“Adaptive Replacement Strategies for MOEA/D”, IEEE Trans. Cybern., 46(2): 474-486,2016.
[33] Y. Yuan, et al,, “Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers”, [EEE
Trans. Evol. Comput., 20(2): 180-198,2016. 51
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Replacement (cont.) Replacement (cont.)

® Matching-based selection (extension):
¢ Global replacement [32]

® Matching-based selection (extension):
¢ Global replacement [32]

» If the newly generated offspring is way beyond the current neighbourhood ... »

»  Find the ‘best agent’ (i.e. subproblem) for the newly generated offspring 4

» Compete with solutions associated with this ‘best agent’

+ MOEA/D-DU [33]

» Update the newly generated offspring’s ‘nearest’ subproblems

If the newly generated offspring is way beyond the current neighbourhood ...
Find the ‘best agent’ (i.e. subproblem) for the newly generated offspring
» Compete with solutions associated with this ‘best agent’
+ MOEA/D-DU [33]
» Update the newly generated offspring’s ‘nearest’ subproblems
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Trans. Evol. Comput., 20(2): 180-198,2016.
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Outline Resources
® |EEE CIS task force on decomposition-based techniques in EC
@ Resources
52 53
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Resources (cont.)

®© Website of MOEA/D: https://sites.google.com/view/moead/home

P

Events

® Workshop on decomposition techniques in evolutionary
optimisation (DTEO)

54

56

Resources (cont.)

®© Three survey papers

Gew
’ 55

P

Events

® Workshop on Computational Intelligence for Massive Optimisation
(CIMO)

Gew
’ 57
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Outline

@ Future Directions

GECC
58

Future Directions (cont.)

®© How to make the collaboration more effective?
* “In case of two agents for one problem, collaboration is useful” [34]
* How about a multi-agent system and cooperative game?
®© Automatic problem solving: meta-optimisation/learning perspective
* |s the current MOEA/D the perfect algorithm structure?
* Use artificial intelligence to design algorithm autonomously
* Landscape analysis and problem feature engineering
* Algorithm portfolio: choose the right algorithm structure for the right problem
.
@ Data-driven optimisation
* Build and maintain a surrogate for each subproblem

* Subproblem has knowledge, e.g. solution history, knowledge can be shared
among neighbourhood: transfer learning or multi-tasking?

GECCQOle=t [34] B. Huberman, et. al., “An Economics Approach to Hard Computational Problems”, Science, 275(5296): 51-54,

1997. 60

Future Directions

© Big optimisation
* Many objectives
» Is approximating the high-dimensional PF doable?
» Problem reformulation (dimensionality reduction)
» Visualisation
o
* Many variables (large-scale)
» Decomposition from decision space (divide-and-conquer): dependency structure analysis
»  What is the relationship between the decomposed variable and subproblem?
» Sensitivity analysis for identifying important variables
v
e Distributed and parallel computing platform
© EMO + MCDM: Human computer interaction perspective

¢ Subproblem is another way to represent decision maker’s preference
»  e.g. weighted scalarizing function, simplified MOP
* How to help decision maker understand the solutions and inject appropriate
preference information?
e ,How to use preference information effectively?

59

Future Directions (cont.)

® Theoretical studies
* Convergence analysis
* Stopping condition
* From an equilibrium perspective?
s ...
© Applications
* Engineering, e.g. water, manufacturing, renewable energy, healthcare ...
* Search-based software engineering
.
® Any suggestions?

GECCOL 8 [22] B. Huberman, et. al.,“An Economics Approach to Hard Computational Problems”, Science,

275(5296):51-54, 1997. 6l
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Thank you for your participation and any questions?
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