GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan © 2018 Copyright is held by the owner/author(s). ACM ISBN 978-1-4503-5764-7/18/07. https://doi.org/10.1145/3205651.3207856

Decomposition Multi-Objective Optimisation

Current Developments and Future Opportunities

un paaaroburaur Ke Li 🗟 <u>k.li@exeter.ac.uk</u>ur

Department of Computer Science, University of Exeter
Qingfu Zhang qingfu.zhang@cityu.edu.hk

Department fo Computer Science, City University of Hong Kong

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Simple MOEA/D
- Current Developments
 - Decomposition methods
 - Search methods
 - Collaboration
 - Mating selection
 - Replacement
- Resources
- Future Directions

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Simple MOEA/D
- Current Developments
 - Decomposition methods
- Search methods
- Collaboration
- Resources
- Future Directions

- :

Why Multi-Objective Optimisation Important?

Many real-world applications involve more than one objective

Discrepancy of the same community/cluster → minimize
Discrepancy of different communities/clusters → maximize

[1] M. Gong, et. al., "Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition", IEEE Trans. Evol. Comput., 18(1): 82-97, 2014.

Why Multi-Objective Optimisation Important?

• Many real-world applications involve more than one objective

[2] M. Ribeiro, et. al., "Multi-Objective Pareto-Efficient Approaches for Recommender Systems", ACM Trans. Intelligent Systems and Technology, 5(4): 1-20, 2014.

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Simple MOEA/D
- Current Developments
 - Decomposition methods
 - Search methods
 - Collaboration
 - Mating selection
 - Replacement
- Resources
- Future Directions

Why Multi-Objective Optimisation Important?

• Many real-world applications involve more than one objective

Shinkansen N700, bullet train [3]

Exeter water distribution network [4]

[3] http://english.jr-central.co.jp/news/n20040616/index.html
[4] R. Farmani, et al. "Evolutionary multi-objective optimization in water distribution network design", Engineering Optimization, 37(2): 167-183, 2005

Multi-objective Optimisation Problem (MOP)

• Mathematical definition (continuous problem)

minimize
$$\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))^T$$

subject to $g_j(\mathbf{x}) \ge a_j, \quad j = 1, \dots, q$
 $h_j(\mathbf{x}) = b_j, \quad j = q + 1, \dots, \ell$
 $\mathbf{x} \in \Omega$

- x: decision variable
- F: objective vector
- Ω decision space
- $\Omega \to \mathbb{R}^m$: objective space

Which Solution is Better?

- \bullet Pareto domination: $\mathbf{x}^1 \preceq \mathbf{x}^2$
 - + $\mathbf{F}(\mathbf{x}^1)$ is no worse than $\mathbf{F}(\mathbf{x}^2)$ in any objective, and
 - $\mathbf{F}(\mathbf{x}^1)$ is better than $\mathbf{F}(\mathbf{x}^2)$ in at least one objective

Which Solution is Better?

- ullet Pareto domination: $\mathbf{x}^1 \preceq \mathbf{x}^2$
 - + $\mathbf{F}(\mathbf{x}^1)$ is no worse than $\mathbf{F}(\mathbf{x}^2)$ in any objective, and
 - $\mathbf{F}(\mathbf{x}^1)$ is better than $\mathbf{F}(\mathbf{x}^2)$ in at least one objective

Which Solution is Better?

- \bullet Pareto domination: $\mathbf{x}^1 \preceq \mathbf{x}^2$
 - $\mathbf{F}(\mathbf{x}^1)$ is no worse than $\mathbf{F}(\mathbf{x}^2)$ in any objective, and
 - $\mathbf{F}(\mathbf{x}^1)$ is better than $\mathbf{F}(\mathbf{x}^2)$ in at least one objective

Which Solution is Better?

- ullet Pareto domination: $\mathbf{x}^1 \preceq \mathbf{x}^2$
 - $\mathbf{F}(\mathbf{x}^1)$ is no worse than $\mathbf{F}(\mathbf{x}^2)$ in any objective, and
 - $\mathbf{F}(\mathbf{x}^1)$ is better than $\mathbf{F}(\mathbf{x}^2)$ in at least one objective

9

Pareto-optimal Solutions = Best Trade-off Candidates

- x is Pareto-optimal iff no solution dominates it
- Pareto set (PS): all Pareto-optimal solutions in <u>decision space</u>
 Pareto front (PF): image of PS in the <u>objective space</u>

Convergence and Diversity in EMO

- Convergence: non-dominated, close to the PF
- Diversity: even distribution along the PF

Convergence and Diversity in EMO

- Convergence: non-dominated, close to the PF
- Diversity: even distribution along the PF

Convergence and Diversity in EMO

- Convergence: non-dominated, close to the PF
- Diversity: even distribution along the PF

Convergence and Diversity in EMO

- Convergence: non-dominated, close to the PF
- Diversity: even distribution along the PF

11

Classic Methods vs Evolutionary Approaches

• Classic multi-objective optimisation [4]

- Evolutionary multi-objective optimisation (EMO)
 - set-based method
 - approximate the PF at a time

[4] K. Deb, "Multi-Objective Optimization Using Evolutionary Algorithms", Wiley, 2009.

Convergence and Diversity in EMO

- Convergence: non-dominated, close to the PF
- Diversity: even distribution along the PF

Balance between convergence and diversity is the corner stone

11

Pareto-based EMO Methods

- Two-step procedure
 - Rank the population by dominance principle
 - dominance level, dominance count, ...
 - Refine the dominance-based ranking by density estimation
 - rowding distance, k-th nearest neighbour, ...

[5] K. Deb, et. al., "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., 6(2):

- 1

Indicator-based EMO Methods

• A (unary) quality indicator I is a function $I: \Psi = 2^X \mapsto \mathbb{R}$ that assigns a Pareto set approximation a real value.

NOTE: performance indicator should be dominance preserving!

[6] N. Beume, et. al., "SMS-EMOA: Multiobjective selection based on dominated hypervolume", Eur J Oper Res. 181(3): 1653-1669, 2007.

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Simple MOEA/D
- Current Developments
 - Decomposition methods
 - Search methods
 - Collaboration
 - Mating selection
 - ▶ Replacement
- Resources
- Future Directions

GECCO

General Framework of MOEA/D

Basic idea

- Decomposition
 - Decompose the task of approximating the PF into N subtasks, i.e. MOP to subproblems
 - Each subproblem can be either single objective or multi-objective
- Collaboration
 - ▶ Population-based technique: N agents for N subproblems.
 - Subproblems are related to each other while N agents solve these subproblems in a collaborative manner.

15

Simple MOEA/D

• A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions $P := \{\mathbf{x}^i\}_{i=1}^N$, a set of reference points $W := \{\mathbf{w}^i\}_{i=1}^N$ and their neighborhood structure. Randomly assign each solution to a reference point.

Step 2: For $i = 1, \dots, N$, do

Step 2.1: Randomly selects a required number of mating parents from \mathbf{w}^{i} 's neighborhood.

Step 2.2: Use crossover and mutation to reproduce offspring \mathbf{x}^c .

Step 2.3: Update the subproblems within the neighborhood of \mathbf{w}^i by $\mathbf{x}^c.$

Step 3: If the stopping criteria is met, then stop and output the population. Otherwise, go to Step 2.

[7] Q. Zhang et al., "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Trans. Evol. Comput., 11(6):712-731, 2007.

Simple MOEA/D

• A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions $P := \{\mathbf{x}^i\}_{i=1}^N$, a set of reference points $W := \{\mathbf{w}^i\}_{i=1}^N$ and their neighborhood structure. Randomly assign each solution to a reference point.

Step 2: For $i = 1, \dots, N$, do

Step 2.1: Randomly selects a required number of mating parents from \mathbf{w}^i 's neighborhood.

Step 2.2: Use crossover and mutation to reproduce offspring \mathbf{x}^c .

Step 2.3: Update the subproblems within the neighborhood of \mathbf{w}^i by $\mathbf{x}^c.$

Step 3: If the stopping criteria is met, then stop and output the population. Otherwise, go to Step 2.

[7] Q. Zhang et al., "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Trans. Evol. Comput., 11(6):712-731, 2007.

Algorithm Settings

Subproblem formulation

multiple objectives

parameters

single objective

 $(f_1(\mathbf{x}), \cdots, f_m(\mathbf{x})) \Longrightarrow$

transformation

 $\Rightarrow g(\mathbf{x}|\cdot)$

A scalarizing function $g: \mathbb{R}^m \to \mathbb{R}$ that maps each objective vector $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x})) \in \mathbb{R}^m$ to a real value $g(\mathbf{F}(\mathbf{x})) \in \mathbb{R}$

weighted sum

 $g(\mathbf{x}|\mathbf{w}) = \sum_{i=1}^{m} w_i \times f_i(\mathbf{x})$

weighted Tchebycheff

 $g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*) = \max_{1 \le i \le m} w_i |f_i(\mathbf{x} - z_i^*)|$

Algorithm Settings

Weight vector/Reference point Setting

- Use Das and Dennis's method [8] to sample a set of uniformly distributed weight vectors from a unit simplex
- $\mathbf{w} = (w_1, \cdots, w_m)^T$ where $\sum_{i=1}^m w_i = 1, \mathbf{w} \in \mathbb{R}^m$
- Each weight vector set a direction line (starting from the utopian point)
- Neighbourhood structure:
 - Two subproblems are neighbours if their weight vectors are close.
 - Neighbouring subproblems are more likely assumed to have similar property (e.g. similar objective function and/or optimal solution).

[8] I. Das et. al., "Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems", SIAM J. Optim, 8(3): 631-657, 1998.

Simple MOEA/D (cont.)

• A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions $P := \{\mathbf{x}^i\}_{i=1}^N$, a set of reference points $W := \{\mathbf{w}^i\}_{i=1}^N$ and their neighborhood structure. Randomly assign each solution to a reference point.

Step 2: For $i = 1, \dots, N$, do

Step 2.1: Randomly selects a required number of mating parents from \mathbf{w}^{i} 's neighborhood.

Step 2.2: Use crossover and mutation to reproduce offspring \mathbf{x}^c .

Step 2.3: Update the subproblems within the neighborhood of \mathbf{w}^i by $\mathbf{x}^c.$

Step 3: If the stopping criteria is met, then stop and output the population. Otherwise, go to Step 2.

20

Simple MOEA/D (cont.)

• A simple MOEA/D works as follows:

Step 1: Initialize a population of solutions $P := \{\mathbf{x}^i\}_{i=1}^N$, a set of reference points $W := \{\mathbf{w}^i\}_{i=1}^N$ and their neighborhood structure. Randomly assign each solution to a reference point.

Step 2: For $i = 1, \dots, N$, do

Step 2.1: Randomly selects a required number of mating parents from \mathbf{w}^i 's neighborhood.

Step 2.2: Use crossover and mutation to reproduce offspring \mathbf{x}^c .

Step 2.3: Update the subproblems within the neighborhood of \mathbf{w}^i by $\mathbf{x}^c.$

Step 3: If the stopping criteria is met, then stop and output the population. Otherwise, go to Step 2.

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Simple MOFA/D
- Current Developments
 - Decomposition methods
 - Search methods
 - Collaboration
 - Mating selection
 - ▶ Replacement
- Resources
- Future Directions

Collaboration Among Different Agents

- At each iteration, each agent does the following:
 - Mating selection (local selection): borrows solutions from its neighbours.
 - Reproduction: reproduce a new solution by applying reproduction operators on its own solutions and borrowed solutions.
 - Replacement (local competition):
 - Pass the new solution among its neighbours (including itself).
 - Replace the old solution by the new one if the new one is better than old one for its objective.

Setting of Weight Vectors

- Drawbacks of the Das and Dennis's method
 - Not very uniform [9]
 - Number of weights is restricted to $N = \binom{H+m-1}{m-1}$
 - N increases nonlinearly with m
 - ightharpoonup If N is not large enough, all weight vectors will be at the boundary of the simplex

[9] Y-Y Tan, et al., "MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives", Comput & OR, 40: 1648-1660, 2013.

[10] K. Li, et al., "An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition", IEEE Trans. Evol. Comput., 19(5): 694-716, 2015.

23

22

Setting of Weight Vectors

Drawbacks of the Das and Dennis's method

• Not very uniform [9]

• Number of weights is restricted to
$$N = \binom{H+m-1}{m-1}$$

• N increases nonlinearly with m

ightharpoonup If N is not large enough, all weight vectors will be at the boundary of the simplex

[9] Y-Y Tan, et al., "MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives", Comput & OR, 40: 1648-1660, 2013.

[10] K. Li, et al., "An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition", IEEE Trans. Evol. Comput., 19(5): 694-716, 2015.

Setting of Weight Vectors

Drawbacks of the Das and Dennis's method

• Not very uniform [9]

• Not very uniform [9]
• Number of weights is restricted to
$$N = \binom{H+m-1}{m-1}$$

• N increases nonlinearly with m

ightharpoonup If N is not large enough, all weight vectors will be at the boundary of the simplex

[9] Y-Y Tan, et al., "MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives", Comput & OR, 40: 1648-1660, 2013.

[10] K. Li, et al., "An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition", IEEE Trans. Evol. Comput., 19(5): 694-716, 2015.

Setting of Weight Vectors

Drawbacks of the Das and Dennis's method

• Not very uniform [9]

• Number of weights is restricted to
$$N = \binom{H+m-1}{m-1}$$

• N increases nonlinearly with m

ightharpoonup If N is not large enough, all weight vectors will be at the boundary of the simplex

[9] Y-Y Tan, et al., "MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives", Comput & OR, 40: 1648-1660, 2013.

[10] K. Li, et al., "An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition", IEEE Trans. Evol. Comput., 19(5): 694-716, 2015.

Setting of Weight Vectors

Drawbacks of the Das and Dennis's method

• Not very uniform [9]

• Number of weights is restricted to
$$N = \binom{H+m-1}{m-1}$$

lacksquare N increases nonlinearly with m

ightharpoonup If N is not large enough, all weight vectors will be at the boundary of the simplex

[9] Y-Y Tan, et al., "MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives", Comput & OR, 40: 1648-1660, 2013.

[10] K. Li, et al., "An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition", IEEE Trans. Evol. Comput., 19(5): 694-716, 2015.

Setting of Weight Vectors (cont.)

- Drawbacks of uniform distributed weight vectors
 - · Do NOT always lead to evenly distributed solutions
 - Do NOT support all PF shapes
 - Disconnected PF
 - Inverted PF

[11] S. Jiang, et al., "Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors", ICNC'11, 1260-1264, 2011.

12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014.

Regression", GECCO'17, 641-648, 2017.

[14] F. Gu, et al., "Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algo Trans. Evol. Comput., 22(2): 211-225, 2018.

Setting of Weight Vectors (cont.)

- Drawbacks of uniform distributed weight vectors
 - · Do NOT always lead to evenly distributed solutions
 - Do NOT support all PF shapes
 - Disconnected PF
 - Inverted PF
 - ٠...

^[11] S. Jiang, et al., "Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors", ICNC'11, 1260-1264, 2011.

Setting of Weight Vectors (cont.)

- Drawbacks of uniform distributed weight vectors
 - · Do NOT always lead to evenly distributed solutions
 - Do NOT support all PF shapes
 - Disconnected PF
 - Inverted PF

 $f_i = 1$, that's fine; otherwise

[11] S. Jiang, et al., "Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors", ICNC'11, 1260-1264, 2011 [12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231-264, 2014.

Regression", GECCO'17, 641-648, 2017.

[14] F. Gu, et al., "Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm", IEEE Trans. Evol. Comput., 22(2): 211-225, 2018.

Setting of Weight Vectors (cont.)

- Drawbacks of uniform distributed weight vectors
 - · Do NOT always lead to evenly distributed solutions
 - Do NOT support all PF shapes
 - Disconnected PF
 - Inverted PF

estimate p according to the number of non-dominated solutions

i=1[12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014

[13] M. Wu, et al., "Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process Regression", GECCO'17, 641-648, 2017.

[14] F. Gu, et al., "Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm", IEEE Trans. Evol. Comput., 22(2): 211-225, 2018.

^{12]} Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014.

13] M. Wu, et al., "Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process egression", GECCO'17, 641-648, 2017.

^{14]} F. Gu, et al., "Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm", IEEE rans. Evol. Comput., 22(2): 211-225, 2018.

Setting of Weight Vectors (cont.)

- Drawbacks of uniform distributed weight vectors
 - Do NOT always lead to evenly distributed solutions
 - Do NOT support all PF shapes
 - Disconnected PF
 - Inverted PF
 - · ...

[11] S. Jiang, et al., "Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors", ICNC'11, 1260-1264, 2011.

12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014.

[13] M. Wu, et al., "Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process Regression", GECCO'17, 641–648, 2017.

[14] F. Gu, et al., "Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm", IEEE Trans. Evol. Comput., 22(2): 211-225, 2018.

Setting of Weight Vectors (cont.)

- Drawbacks of uniform distributed weight vectors
 - Do NOT always lead to evenly distributed solutions
 - Do NOT support all PF shapes
 - Disconnected PF
 - Inverted PF
 - · ...

Adaptive weight vectors adjustment

- Estimate the PF shape progressively according to the current population
- Resample a set of weight vectors according to the estimated PF
- ✓ Add new ones in feasible regions, and remove useless ones from infeasible regions [12] ✓ Sampling from some estimated model, e.g. GP [13]
- Construct new subproblems with respect to newly sampled weight vectors

[11] S. Jiang, et al., "Multiobjective Optimization by Decomposition with Pareto-adaptive Weight Vectors", ICNC'11, 1260-1264, 2011

[12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014.

[13] M. Wu, et al., "Adaptive Weights Generation for Decomposition-Based Multi-Objective Optimization Using Gaussian Process Regression", GECCO'17, 641–648, 2017.

[14] F. Gu, et al., "Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm", IEEE Trans. Evol. Comput., 22(2): 211-225, 2018.

Revisit Weighted Tchebycheff

Weighted Tchebycheff

weighted Tchebycheff

$$g(\mathbf{x}|\mathbf{w},\mathbf{z}^*) = \max_{1 \le i \le m} w_i |f_i(\mathbf{x} - z_i^*)|$$

rawhack

- non-smooth, weakly dominate solution
- evenly distributed weights evenly do NOT lead to distributed solutions
- might easily loose diversity

Revisit Weighted Tchebycheff

Weighted Tchebycheff

)rawback:

- non-smooth, weakly dominate solution [15]
- evenly distributed weights evenly do NOT lead to distributed solutions
- might easily loose diversity

$$g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*) = \max_{1 \le i \le m} w_i |f_i(\mathbf{x} - z_i^*)|$$

[15] K. Miettinen, et al., "Nonlinear Multiobjective Optimization", Kluwer Academic Publishers, Boston, 1999

Revisit Weighted Tchebycheff

Weighted Tchebycheff

 $g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*) = \max_{1 \le i \le m} w_i | f_i(\mathbf{x} - z_i^*) |$

[15] K. Miettinen, et al., "Nonlinear Multiobjective Optimization", Kluwer Academic Publishers, Boston, 1999

Revisit Weighted Tchebycheff

Weighted Tchebycheff

weighted Tchebycheff

$$g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*) = \max_{1 \le i \le m} w_i |f_i(\mathbf{x} - z_i^*)|$$

augmented scalarizing function

$$g^{a}(\mathbf{x}|\mathbf{w}, \mathbf{z}^{*}) = \max_{1 \leq i \leq m} \left(\frac{f_{i}(\mathbf{x} - z_{i}^{*})}{w_{i}}\right) + \rho \sum_{i=1}^{m} \left(\frac{f_{i}(\mathbf{x} - z_{i}^{*})}{w_{i}}\right)$$

[15] K. Miettinen, et al., "Nonlinear Multiobjective Optimization", Kluwer Academic Publishers, Boston, 1999

Revisit Weighted Tchebycheff

Weighted Tchebycheff

[15] K. Miettinen, et al., "Nonlinear Multiobjective Optimization", Kluwer Academic Publishers, Boston, 1999

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

weighted Tchebycheff

$$g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*) = \max_{1 \le i \le m} w_i |f_i(\mathbf{x} - z_i^*)|$$

[12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014.

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

[12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014.

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

[12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014.

27

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

 $g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*) = \max_{1 \le i \le m} w_i | f_i(\mathbf{x} - z_i^*)|$

• non-smooth, weakly dominate solution evenly distributed weights evenly do NOT lead to distributed solutions might easily loose diversity

The search direction for $\mathbf{w} = (w_1, \cdots, w_m)^T$ is $\mathbf{w} =$

[12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014.

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

The search direction for $\mathbf{w} = (w_1, \cdots, w_m)^T$ is \mathbf{w}

[12] Y. Qi, et al., "MOEA/D with Adaptive Weight Adjustment", Evol. Comput. 22(2): 231–264, 2014.

27

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

 $g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*) = \max w_i |f_i(\mathbf{x} - z_i^*)|$

non-smooth, weakly dominate solution

- evenly distributed weights evenly do NOT lead to distributed solutions
- might easily loose diversity [16]

[16] S. Jiang, et al., "Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary Algorithms", IEEE Trans. Evol. Comput., 22(2): 296-313, 2018.

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

- evenly distributed weights evenly do NOT lead to distributed solutions
- might easily loose diversity [16]

[16] S. Jiang, et al., "Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary Algorithms", IEEE Trans. Evol. Comput., 22(2): 296-313, 2018.

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

Drawback

- non-smooth, weakly dominate solution
- evenly distributed weights evenly do NOT lead to distributed solutions
- might easily loose diversity [17]

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

- non-smooth, weakly dominate solution
- evenly distributed weights evenly do NOT lead to distributed solutions
- might easily loose diversity [17]

Pareto adaptive scalarizing to choose p

minimize
$$p, p \in P$$

subject to $\forall \mathbf{x}^k : g^{wd}(\mathbf{x}^*|\mathbf{w}, \mathbf{z}^*, p)$
 $\leq g^{wd}(\mathbf{x}^k|\mathbf{w}, \mathbf{z}^*, p)$

weighted Lp scalarizing [12]

$$g^{wd}(\mathbf{x}|\mathbf{w}) = \left(\sum_{i=1}^{m} \lambda_i (f_i(\mathbf{x}) - z_i^*)^p\right)^{\frac{1}{p}}$$
$$\lambda_i = \left(\frac{1}{w_i}\right), p \ge 1$$

[17] R. Wang, et al., "Decomposition-Based Algorithms Using Pareto Adaptive Scalarizing Methods", IEEE Trans. Evol. Comput., 20(6): 821-837, 2016. weighted L_p scalarizing [12] $g^{wd}(\mathbf{x}|\mathbf{w}) = (\sum_{I=1}^m \lambda_i (f_i(\mathbf{x}) - z_i^*)^p)^{\frac{1}{p}}$ $\lambda_i = (\frac{1}{w_i}), p \geq 1$

[17] R. Wang, et al., "Decomposition-Based Algorithms Using Pareto Adaptive Scalarizing Methods", IEEE Trans. Evol.

Revisit Weighted Tchebycheff (cont.)

Weighted Tchebycheff

weighted L_p scalarizing [12]

weighted
$$L_p$$
 scalarizing [12]
$$g^{wd}(\mathbf{x}|\mathbf{w}) = (\sum_{l=1}^{m} \lambda_i (f_i(\mathbf{x}) - z_i^*)^p)^{\frac{1}{p}}$$

$$\lambda_i = (\frac{1}{m}), p \ge 1$$

[17] R. Wang, et al., "Decomposition-Based Algorithms Using Pareto Adaptive Scalarizing Methods", IEEE Trans. Evol.

non-smooth, weakly dominate solution

- evenly distributed weights evenly do NOT lead to distributed solutions
- might easily loose diversity [17]

Pareto adaptive scalarizing to choose p

$$\begin{array}{ll} \text{minimize} & p, & p \in P \\ \text{subject to} & \forall \mathbf{x}^k : g^{wd}(\mathbf{x}^*|\mathbf{w}, \mathbf{z}^*, p) \\ & \leq g^{wd}(\mathbf{x}^k|\mathbf{w}, \mathbf{z}^*, p) \end{array}$$

Revisit Weighted Sum

Weighted sum

weighted sum

$$g(\mathbf{x}|\mathbf{w}) = \sum_{i=1}^{m} w_i \times f_i(\mathbf{x})$$

• only useful for convex PFs while not all Pareto-optimal solutions can be found if the PF is not convex.

30

Revisit Weighted Sum

Weighted sum

weighted sum

$$g(\mathbf{x}|\mathbf{w}) = \sum_{i=1}^{m} w_i \times f_i(\mathbf{x})$$

• only useful for convex PFs while not all Pareto-optimal solutions can be found if the PF is not convex.

Weighted sum

Revisit Weighted Sum

weighted sum

$$g(\mathbf{x}|\mathbf{w}) = \sum_{i=1}^{m} w_i \times f_i(\mathbf{x})$$

- The superior region is constantly 1/2, whereas it is $1/2^m$ for the L_p scalarizing
- MOEA/D with weighted sum have better convergence (given convex PF)

[18] R. Wang, et al., "Localized Weighted Sum Method for Many-Objective Optimization", IEEE Trans. Evol. Comput.,

Revisit Weighted Sum

Weighted sum

weighted sum really that bad

- The superior region is constantly 1/2, whereas it is $1/2^m$ for the L_p scalarizing
- MOEA/D with weighted sum have better convergence (given convex PF)

$$g(\mathbf{x}|\mathbf{w}) = \sum_{i=1}^{m} w_i \times f_i(\mathbf{x})$$

[18] R. Wang, et al., "Localized Weighted Sum Method for Many-Objective Optimization", IEEE Trans. Evol. Comput., 22(1): 3-18, 2018.

Boundary Intersection

• Penalty-Based Intersection (PBI) [7]

$$g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*) = d_1 + \theta d_2$$
$$d_1 = \frac{\|(\mathbf{F}(\mathbf{x}) - \mathbf{z}^*)^T \mathbf{w}\|}{\|\mathbf{w}\|}$$
$$d_2 = \|\mathbf{F}(\mathbf{x}) - (\mathbf{z}^* + d_1 \frac{\mathbf{w}}{\|\mathbf{w}\|})\|$$

Characteristics:

- *d*₁ 'measures' the <u>convergence</u>
- ⇒can be replaced by other measure [19]
- d₂ 'measures' the <u>diversity</u>
- ⇒can be replaced by angle [19,20]
- θ controls the contour and trade-offs

[7] Q. Zhang and H. Li, "MOEA/D:A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Trans. Evol. Comput., 11(6) 712-731, 2007.

[19] R. Cheng, et al., "A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization", IEEE Trans. Evol. Comput. 20(5): 773-791, 2016.

[20] Y. Xiang, et al., "A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization", IEEE Trans. Evol. Comput., 21(1): 131-152, 2017.

[21] H. Sato, "Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs", J. Heuristics, 21:819-849, 2015.

Revisit Weighted Sum

Weighted sum

• The superior region is constantly 1/2,

whereas it is $1/2^m$ for the L_P scalarizing • MOEA/D with weighted sum have better convergence (given convex PF)

Localised weighted sum

[18] R. Wang, et al., "Localized Weighted Sum Method for Many-Objective Optimization", IEEE Trans. Evol. Comput., 22(1): 3-18. 2018.

Boundary Intersection

Penalty-Based Intersection (PBI) [7]

Inverted PBI [21]

- d_1 'measures' the <u>convergence</u>
- ⇒can be replaced by other measure [19]
- d₂ 'measures' the diversity
 ⇒ can be replaced by angle [19,20]
- θ controls the contour and trade-offs
- [7] Q. Zhang and H. Li, "MOEA/D:A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Trans. Evol. Comput., 11(6): 712-731, 2007.

[21] H. Sato, "Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs", J. Heuristics, 21:819,849, 2015

Boundary Intersection

Penalty-Based Intersection (PBI) [7]

Inverted PBI [21]

$$g(\mathbf{x}|\mathbf{w}, \mathbf{z}^{nad}) = d_1 - \theta d_2$$
$$d_1 = \frac{\|(\mathbf{F}(\mathbf{x}) - \mathbf{z}^{nad})^T \mathbf{w}\|}{\|\mathbf{w}\|}$$
$$d_2 = \|\mathbf{F}(\mathbf{x}) - (\mathbf{z}^{nad} + d_1 \frac{\mathbf{w}}{\|\mathbf{w}\|})\|$$

- *d*₁ 'measures' the convergence
- ⇒can be replaced by other measure [19]
- d2 'measures' the diversity
- ⇒can be replaced by angle [19,20]
- θ controls the contour and trade-offs

[7] Q. Zhang and H. Li, "MOEA/D:A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Trans. Evol. Comput., 11(6) 712-731, 2007.

[19] R. Cheng, et al., "A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization", IEEE Trans. Evol. Comput., 20(5): 773-791, 2016.

[20] Y. Xiang, et al., "A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization", IEEE Trans. Evol.

[21] H. Sato, "Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs", J. Heuristics,

Constrained Decomposition

- The improvement region of WS, TCH and PBI is too large
 - · Gives a solution large chance to update many agents: hazard to diversity

• Add a constraint to the subproblem to reduce the improvement region [22]

minimize
$$g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*)$$

subject to $\langle \mathbf{a}^i, \mathbf{F}(\mathbf{x}) - \mathbf{z}^* \rangle \leq 0.5\theta^i$

[22] L. Wang, et al., "Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm", IEEE Trans. Evol. Comput., 20(3): 475-480, 2016.

Constrained Decomposition

- The improvement region of WS, TCH and PBI is too large
 - Gives a solution large chance to update many agents: hazard to diversity

· Add a constraint to the subproblem to reduce the improvement region [22]

minimize
$$g(\mathbf{x}|\mathbf{w}, \mathbf{z}^*)$$

subject to $\langle \mathbf{a}^i, \mathbf{F}(\mathbf{x}) - \mathbf{z}^* \rangle \leq 0.5\theta^i$

[22] L. Wang, et al., "Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm", IEEE Trans. Evol. Comput., 20(3): 475-480, 2016.

Subproblem Can Be Multi-Objective ...

- MOP to MOP (M2M)
 - Decompose a MOP into K(K > 1) constrained MOPs [23].

minimize
$$\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))^T$$

subject to $\mathbf{x} \in \Omega$

Subproblem Can Be Multi-Objective ...

- MOP to MOP (M2M)
 - Decompose a MOP into K(K > 1) constrained MOPs [23].

minimize
$$\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))^T$$

subject to $\mathbf{x} \in \Omega$

minimize $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))^T$ subject to $\mathbf{x} \in \Omega$ $\mathbf{F}(\mathbf{x}) \in \Omega_k$

Subproblem Can Be Multi-Objective ...

- MOP to MOP (M2M)
 - Decompose a MOP into K(K > 1) constrained MOPs [23].

minimize
$$\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))^T$$

subject to $\mathbf{x} \in \Omega$

minimize $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))^T$ subject to $\mathbf{x} \in \Omega$ $\mathbf{F}(\mathbf{x}) \in \Omega_k$

$$\Omega_k = \{ \mathbf{F}(\mathbf{x}) \in \mathbb{R}^m | \langle \mathbf{F}(\mathbf{x}), \mathbf{w}^i \rangle \le \langle \mathbf{F}(\mathbf{x}), \mathbf{w}^j \rangle \text{ for any } j = 1, \dots, K \}$$

[23] H. Liu, et al., "Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems", IEEE Trans. Evol. Comput., 18(3): 450-455, 2014.

[23] H. Liu, et al., "Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems", IEEE Trans. Evol. Comput., 18(3): 450-455, 2014.

Subproblem Can Be Multi-Objective ...

- MOP to MOP (M2M)
 - Decompose a MOP into K(K > 1) constrained MOPs [23].

minimize
$$\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))^T$$

subject to $\mathbf{x} \in \Omega$

minimize $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))^T$ subject to $\mathbf{x} \in \Omega$ $\mathbf{F}(\mathbf{x}) \in \Omega_k$

$$\Omega_k = \{ \mathbf{F}(\mathbf{x}) \in \mathbb{R}^m | \langle \mathbf{F}(\mathbf{x}), \mathbf{w}^i \rangle \le \langle \mathbf{F}(\mathbf{x}), \mathbf{w}^j \rangle \text{ for any } j = 1, \dots, K \}$$

[23] H. Liu, et al., "Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems", IEEE Trans. Evol. Comput., 18(3): 450-455, 2014.

Subproblem Can Be Multi-Objective ...

- MOP to MOP (M2M)
 - Decompose a MOP into $K(K \ge 1)$ constrained MOPs [23].

minimize
$$\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))^T$$

subject to $\mathbf{x} \in \Omega$

minimize $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))^T$ subject to $\mathbf{x} \in \Omega$ $\mathbf{F}(\mathbf{x}) \in \Omega_k$

$$\Omega_k = \{ \mathbf{F}(\mathbf{x}) \in \mathbb{R}^m | \langle \mathbf{F}(\mathbf{x}), \mathbf{w}^i \rangle \le \langle \mathbf{F}(\mathbf{x}), \mathbf{w}^j \rangle \text{ for any } j = 1, \dots, K \}$$

[23] H. Liu, et al., "Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems", IEEE Trans. Evol. Comput., 18(3): 450-455, 2014.

Subproblem Can Be Multi-Objective ...

- MOP to MOP (M2M)
 - Decompose a MOP into K(K > 1) constrained MOPs [23].

minimize $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))^T$ subject to $\mathbf{x} \in \Omega$

minimize $\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))^T$ subject to $\mathbf{x} \in \Omega$ $\mathbf{F}(\mathbf{x}) \in \Omega_k$

 $\Omega_k = \{ \mathbf{F}(\mathbf{x}) \in \mathbb{R}^m | \langle \mathbf{F}(\mathbf{x}), \mathbf{w}^i \rangle \le \langle \mathbf{F}(\mathbf{x}), \mathbf{w}^j \rangle \text{ for any } j = 1, \dots, K \}$

• Each agent is an EMO algorithm.

[23] H. Liu, et al., "Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems", IEEE Trans. Evol. Comput., 18(3): 450-455, 2014.

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Oracle MOEA/D
- Current Developments
 - Decomposition methods
 - Search methods
 - Collaboration
 - Mating selection
 - ▶ Replacement
- Resources
- Future Directions

Dynamic Resource Allocation

- Are all subproblems equally important?
 - Some regions in the PF/PS are easier than the others.
 - Different agents require different amounts of computational resources.
- Dynamic resource allocation (DRA) in MOEA/D [24]
 - Utility function to measure the likelihood of improvement
 - + e.g. fitness improvement over ΔT

$$u^I = \frac{g^i(\mathbf{x_{t-\Delta T}^i}) - g^I(\mathbf{x}_t^i)}{g^i(\mathbf{x_{t-\Delta T}^i})}$$

- · Allocation mechanism
 - e.g. probability of improvement

$$p^{i} = \frac{u^{i} + \epsilon}{\max_{j=1,\dots,N} \{u^{j}\} + \epsilon}$$

[24] A. Zhou, et al., "Are All the Subproblems Equally Important? Resource Allocation in Decomposition-Based Multiobjective Evolutionary Algorithms", IEEE TEVC, 20(1): 52-64, 2016.

Search Methods

- Offspring reproduction in MOEA/D
 - Neighbourhood defines where to find mating parents
 - Any genetic operator can be used
 - GA [7], DE [25], PSO [26], guided mutation [27], ...

[7] Q. Zhang et al., "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition", IEEE Trans. Evol. Comput., 11(6): 712-731, 2007.

[25] H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II", IEEE Trans. Evol. Comput., 13(2): 284-302, 2009.

[26] S. Martínez, et al., "A multi-objective PSO based on decomposition, in GECCO 201

[27] C. Chen, et al., "Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization", CEC 2009

Search Methods

- Offspring reproduction in MOEA/D
 - Neighbourhood defines where to find mating parents
 - Any genetic operator can be used
 - Any <u>local search</u> can be used
 - simulated annealing [28], interpolation [29], tabu search [30], GRASP [31], Nelder-Mead [32], ...

[28] H. Li, et al., "An adaptive evolutionary multi-objective approach based on simulated annealing", Evol. Comput. 19(4):

[29] K. Sindhya, "A new hybrid mutation operator for multiobjective optimization with differential evolution", Soft Comput., 15-2041-2055 2011

[30] A. Alhindi, et al., "Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation", UKCI 2014. [31] A. Alhindi, et al., "MOEA/D with Tabu Search for multiobjective permutation flow shop scheduling problems", CEC 2014.

[32] H. Zhang, et al., "Accelerating MOEA/D by Nelder-Mead method", CEC 2017.

Search Methods (cont.)

Using Probability Collective in MOEA/D

• Instead of a point-based search, probability collective aims to fit a probability distribution highly peaked around the neighbourhood of PS

Search is based one sampling or local search upon the fitted model

Search Methods

- Offspring reproduction in MOEA/D
 - Neighbourhood defines where to find mating parents
 - Any genetic operator can be used
 - Any <u>local search</u> can be used
 - · Probabilistic model can be used
 - Memory
 - Each agent records historical information, i.e. elites
 - Model building and solution construction
 - ⇒ Each agent can build 'local model', e.g. ACO [33], EDA [34], cross entropy [35], graphical model [36], CMA-ES [37], based on memory of itself and its neighbour
 - New solutions are sampled from these models
 - → NOTE: too many models may be too expensive
 - Memory update
 - → Offspring update each agent's and its neighbour's memory

[33] L. Ke, et al., "MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and Ant Colony", IEEE Trans.

[34] A. Zhou, et al., "A Decomposition based Estimation of Distribution Algorithm for Multiobjective Traveling Salesman Problems", Computers & Mathematics with Applications, 66(10): 1857-1868, 2013.

[35] I. Giagkiozis, et al., "Generalized decomposition and cross entropy methods for many-objective optimization", Inf. Sci., 282:

[36] M. de Souza, et al., "MOEA/D-GM: Using probabilistic graphical models in MOEA/D for solving combinatorial optimization problems", arXiv:1511.05625, 2015.

[37] H. Li, et al., "Biased Multiobjective Optimization and Decomposition Algorithm", IEEE Trans. Cybern., 47(1): 52-66, 2016.

Search Methods (cont.)

- Expensive optimisation
 - Building surrogate model for expensive objective function
 - e.g. Gaussian process (Kriging) [39, 40], RBF [41], ...

[39] Q. Zhang, et al., "Expensive Multiobjective Optimization by MOEA/D with Gaussian Process Model", IEEE Trans. Evol. Comput., 14(3): 456-474, 2010.

[40] T. Chugh, et al., "A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-Objective Optimization", 22(1): 129-142, 2018.

[41] S. Martínez, et al., "MOEA/D assisted by RBF Networks for Expensive Multi-Objective Optimization Problems",

Search Methods (cont.)

- Adaptive operator selection as a multi-armed bandits [39]
 - Strike the balance between the exploration and exploitation
 - Exploration: acquire new information (diversity)
 - Exploitation: capitalise on the available knowledge (convergence)

Mating Selection

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...

decomposition", IEEE Trans. Evol. Comput., 18(1): 114-130, 2014.

- MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

- Focusing on the neighbourhood is too much exploited
- Give some chance to explore in the whole population [25]

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Oracle MOEA/D
- Current Developments
 - Decomposition methods
 - Search methods
 - Collaboration
 - Mating selection
 - Replacement
- Resource
- Future Directions

43

Mating Selection

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

- ► Focusing on the neighbourhood is too much exploited
- Give some chance to explore in the whole population [25]

GECCO

[25] H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II", IEEE Trans. Evol. Comput., 13(2): 284-302, 2009.

Mating Selection

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

- ► Focusing on the neighbourhood is too much exploited
- Give some chance to explore in the whole population [25]

[25] H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II", IEEE Trans. Evol. Comput., 13(2): 284-302, 2009.

Mating Selection (cont.)

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)

- ▶ Large neighbourhood makes the search globally
- ▶ Small neighbourhood encourages local search

GECCO

[27] S. Zhao, et al., "Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes", IEEE Trans. Evol. Comput., 16(3): 442-446, 2013.

Mating Selection (cont.)

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

[27] S. Zhao, et al., "Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes", IEEE Trans. Evol. Comput., 16(3): 442-446, 2013.

Mating Selection (cont.)

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)

- ▶ Large neighbourhood makes the search globally
- ▶ Small neighbourhood encourages local search

[27] S. Zhao, et al., "Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes", IEEE Trans. Evol. Comput., 16(3): 442-446, 2013.

Mating Selection (cont.)

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)

- Large neighbourhood makes the search globally
- ▶ Small neighbourhood encourages local search

Build an ensemble of neighbourhood sizes and chooses the appropriate one based on their historical performance. [27]

[27] S. Zhao, et al., "Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes", IEEE Trans. Evol. Comput., 16(3): 442-446, 2013.

Mating Selection (cont.)

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

Take crowdedness into consideration [28]

- ▶ Compute the niche count of each solution within agent i's neighbour
- Select mating parents from outside of the neighbour if solutions are overly crowded

[28] S. Jiang, et al., "An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts", IEEE Trans. Cybern, 46(2): 421-437, 2016.

Mating Selection (cont.)

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

Effects of neighbourhood size (NS)

- Large neighbourhood makes the search globally
- ▶ Small neighbourhood encourages local search

Build an ensemble of neighbourhood sizes and chooses the appropriate one based on their historical performance. [27]

[27] S. Zhao, et al., "Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes", IEEE Trans. Evol. Comput., 16(3): 442-446, 2013.

Mating Selection (cont.)

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

Take crowdedness into consideration [28]

- ▶ Compute the niche count of each solution within agent i's neighbour
- ▶ Select mating parents from outside of the neighbour if solutions are overly crowded

[28] S. Jiang, et al., "An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts", IEEE Trans. Cybern, 46(2): 421-437, 2016.

Mating Selection (cont.)

- Mating selection: how to select parents for offspring reproduction?
 - Tournament selection, genotype neighbours, ...
 - MOEA/Ds leverage the neighbourhood structure of weight vectors
 - Assumption: neighbouring subproblems have similar structure
 - Select mating parents purely from neighbouring agents (simple MOEA/D)

Take crowdedness into consideration [28]

- ► Compute the niche count of each solution within agent *i*'s neighbour
- Select mating parents from outside of the neighbour if solutions are overly crowded

[28] S. Jiang, et al., "An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts", IEEE Trans. Cybern, 46(2): 421-437, 2016.

Replacement

- Replacement: update the parent population
 - Steady-state evolution model (oracle MOEA/D)
 - Update as many neighbouring subproblems as it can (oracle MOEA/D)

- ▶ The replacement strategy of the oracle MOEA/D
- Offspring is only allowed to replace a limited number of parents [26]
- · Pros: Good for diversity
- Cons: convergence may be slow

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Oracle MOEA/D
- Current Developments
 - Decomposition method
 - Search methods
 - Collaboration
 - Mating selection
 - Replacement
- Resources
- Future Directions

47

Replacement

- Replacement: update the parent population
 - Steady-state evolution model (oracle MOEA/D)
 - Update as many neighbouring subproblems as it can (oracle MOEA/D)

- The replacement strategy of the oracle MOEA/D is too greedy
- Offspring is only allowed to replace a limited number of parents [26]
- Pros: Good for diversity
- Cons: convergence may be slow

[26] H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II", IEEE Trans. Evol. Comput., 13(2): 284-302, 2009.

[26] H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II", IEEE Trans. Evol. Comput., 13(2): 284-302, 2009.

Replacement

- Replacement: update the parent population
 - Steady-state evolution model (oracle MOEA/D)
 - Update as many neighbouring subproblems as it can (oracle MOEA/D)

- The replacement strategy of the oracle MOEA/D
- Offspring is only allowed to replace a limited number of parents [26]
- Pros: Good for diversity
- Cons: convergence may be slow

[26] H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II", IEEE Trans. Evol. Comput., 13(2): 284-302, 2009.

Replacement (cont.)

- Matching-based selection [29,30]
 - Subproblems and solutions are two sets of agents
 - Subproblems 'prefer' convergence, solutions 'prefer' diversity

[29] K. Li, et al., "Stable Matching Based Selection in Evolutionary Multiobjective Optimization", IEEE Trans. Evol. Comput., 18(6): 909–923, 2014.

[30] M. Wu, et al., "Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization", IEEE Trans. Evol. Comput., 21(4): 554–568, 2017.

Replacement (cont.)

- Matching-based selection [29,30]
 - Subproblems and solutions are two sets of agents
 - Subproblems 'prefer' convergence, solutions 'prefer' diversity

[29] K. Li, et al., "Stable Matching Based Selection in Evolutionary Multiobjective Optimization", IEEE Trans. Evol. Comput., 18(6):909–923, 2014.

[30] M. Wu, et al., "Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization", IEEE Trans. Evol. Comput., 21(4): 554–568, 2017.

Replacement (cont.)

- Matching-based selection [29,30]
 - Subproblems and solutions are two sets of agents
 - Subproblems 'prefer' convergence, solutions 'prefer' diversity

[29] K. Li, et al., "Stable Matching Based Selection in Evolutionary Multiobjective Optimization", IEEE Trans. Evol. Comput., 18(6): 909–923, 2014.

[30] M. Wu, et al., "Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization", IEEE Trans. Evol. Comput., 21 (4): 554–568, 2017.

Replacement (cont.)

- Matching-based selection [29,30]
 - Subproblems and solutions are two sets of agents
 - Subproblems 'prefer' convergence, solutions 'prefer' diversity

[29] K. Li, et al., "Stable Matching Based Selection in Evolutionary Multiobjective Optimization", IEEE Trans. Evol. Comput., 18(6): 909–923, 2014.

[30] M.Wu, et al., "Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization", IEEE Trans. Evol. Comput., 21(4): 554–568, 2017.

Replacement (cont.)

- Matching-based selection (extension) [31]
 - Identify the inter-relationship between subproblems and solutions
 - Find the related subproblems to each solution (e.g. fitness)
 - > Find the related solutions for each subproblem (e.g. closeness)
 - Selection mechanism: each subproblem chooses its favourite solution

[31] K. Li, et al., "Interrelationship-based selection for decomposition multiobjective optimization", IEEE Trans. Cybern. 45(10): 2076–2088, 2015.

Replacement (cont.)

- Matching-based selection [29,30]
 - Subproblems and solutions are two sets of agents
 - Subproblems 'prefer' convergence, solutions 'prefer' diversity

selection — matching

- ▶ A <u>unified</u> perspective to look at selection
- A generational evolution model for MOEA/D
- √ What is convergence?
- → Aggregation function, ...
- √ What is diversity?
- ⇒ Perpendicular distance, angle ...
- √ Mechanism to match
- ⇒ Stable matching. ...

[29] K. Li, et al., "Stable Matching Based Selection in Evolutionary Multiobjective Optimization", IEEE Trans. Evol. Comput., 18(6): 909–923, 2014.

[30] M.Wu, et al., "Matching-Based Selection with Incomplete Lists for Decomposition Multi-Objective Optimization", IEEE Trans. Evol. Comput., 21(4): 554–568, 2017.

Replacement (cont.)

- Matching-based selection (extension):
 - Global replacement [32]
 - $\,\boldsymbol{\cdot}\,\,$ If the newly generated offspring is way beyond the current neighbourhood \ldots
 - Find the 'best agent' (i.e. subproblem) for the newly generated offspring
 - Compete with solutions associated with this 'best agent'
 - MOEA/D-DU [33]
 - · Update the newly generated offspring's 'nearest' subproblems

J1
23] Z. Wang, et al., "Adaptive Replacement Strategies for MOEA/D", IEEE Trans. Cybern., 46(2): 474-486, 2016.
[33] Y. Yuan, et al., "Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers", IEEE
Trans. Evol. Comput., 20(2): 180-198, 2016.

Replacement (cont.)

- Matching-based selection (extension):
 - Global replacement [32]
 - If the newly generated offspring is way beyond the current neighbourhood ...
 - Find the 'best agent' (i.e. subproblem) for the newly generated offspring
 - · Compete with solutions associated with this 'best agent'
 - MOEA/D-DU [33]
 - Update the newly generated offspring's 'nearest' subproblems

[32] Z. Wang, et al., "Adaptive Replacement Strategies for MOEA/D", IEEE Trans. Cybern., 46(2): 474-486, 2016.
[33] Y. Yuan, et al., "Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers", IEEE
Trans. Evol. Comput., 20(2): 180-198, 2016.

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Simple MOFA/D
- Current Developments
 - Decomposition methods
 - Search methods
 - Collaboration
 - Mating selection
 - ▶ Replacement
- Resources
- Future Directions

Replacement (cont.)

- Matching-based selection (extension):
 - Global replacement [32]
 - If the newly generated offspring is way beyond the current neighbourhood ...
 - Find the 'best agent' (i.e. subproblem) for the newly generated offspring
 - · Compete with solutions associated with this 'best agent'
 - MOEA/D-DU [33]
 - Update the newly generated offspring's 'nearest' subproblems

[32] Z.Wang, et al., "Adaptive Replacement Strategies for MOEA/D", IEEE Trans. Cybern., 46(2): 474-486, 2016.
[33] Y.Yuan, et al., "Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers", IEEE
Trans. Evol. Comput., 20(2): 180-198, 2016.

Resources

• IEEE CIS task force on decomposition-based techniques in EC

Resources (cont.)

• Website of MOEA/D: https://sites.google.com/view/moead/home

Events

Workshop on decomposition techniques in evolutionary optimisation (DTEO)

Resources (cont.)

• Three survey papers

A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition

Anupam Trivedi, Member, IEEE, Dipti Srinivasan, Senior Member, IEEE, Krishnendu Sanyal, and Abhiroop Ghosh

Abstract—Decomposition is a well-known strategy in where a traditional multiobjective optimization. However, the decomposition strategy was not widely employed in evolutionary function

where Ω is the search space and x is the decision variable vector. F : Ω → ℝ^m, where m is the number of objective functions, and ℝ^m is the objective reach.

GECCO

Events

 Workshop on Computational Intelligence for Massive Optimisation (CIMO)

Outline

- Why Multi-Objective Optimisation Important?
- Basic Concepts
- Simple MOEA/D
- Current Developments
 - Decomposition methods
 - Search methods
 - Collaboration
 - Mating selection
 - Replacement
- Resources
- Future Directions

58

Future Directions (cont.)

- How to make the collaboration more effective?
 - "In case of two agents for one problem, collaboration is useful" [34]
 - How about a multi-agent system and cooperative game?
- Automatic problem solving: meta-optimisation/learning perspective
 - Is the current MOEA/D the perfect algorithm structure?
 - Use artificial intelligence to design algorithm autonomously
 - · Landscape analysis and problem feature engineering
 - Algorithm portfolio: choose the right algorithm structure for the right problem
 - ...
- Data-driven optimisation
 - Build and maintain a surrogate for each subproblem
 - Subproblem has knowledge, e.g. solution history, knowledge can be shared among neighbourhood: transfer learning or multi-tasking?
 - ...

[34] B. Huberman, et. al., "An Economics Approach to Hard Computational Problems", Science, 275(5296): 51-54,

Future Directions

Big optimisation

- Many objectives
 - Is approximating the high-dimensional PF doable?
 - Problem reformulation (dimensionality reduction)
 - Visualisation
 - •
- Many variables (large-scale)
 - Decomposition from decision space (divide-and-conquer): dependency structure analysis
 - What is the relationship between the decomposed variable and subproblem?
 - Sensitivity analysis for identifying important variables
- Distributed and parallel computing platform
- EMO + MCDM: Human computer interaction perspective
- Subproblem is another way to represent decision maker's preference
 - e.g. weighted scalarizing function, simplified MOP
- How to help decision maker understand the solutions and inject appropriate preference information?
- How to use preference information effectively?

59

Future Directions (cont.)

- Theoretical studies
 - · Convergence analysis
 - Stopping condition
 - From an equilibrium perspective?
 - ...
- Applications
 - Engineering, e.g. water, manufacturing, renewable energy, healthcare ...
 - Search-based software engineering
 - ..
- Any suggestions?
 - ..

[22] B. Huberman, et. al., "An Economics Approach to Hard Computational Problems", Science,

