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Abstract—Multiobjective evolutionary algorithm based on de-
composition (MOEA/D) decomposes a multiobjective optimiza-
tion problem into a set of scalar optimization subproblems and
optimizes them in a collaborative manner. Subproblems and
solutions are two sets of agents that naturally exist in MOEA/D.
The selection of promising solutions for subproblems can be re-
garded as a matching between subproblems and solutions. Stable
matching, proposed in economics, can effectively resolve conflicts
of interests among selfish agents in the market. In this paper,
we advocate the use of a simple and effective stable matching
(STM) model to coordinate the selection process in MOEA/D.
In this model, subproblem agents can express their preferences
over the solution agents, and vice versa. The stable outcome
produced by the STM model matches each subproblem with one
single solution, and it tradeoffs convergence and diversity of the
evolutionary search. Comprehensive experiments have shown the
effectiveness and competitiveness of our MOEA/D algorithm with
the STM model. We have also demonstrated that user-preference
information can be readily used in our proposed algorithm to find
a region that decision makers are interested in.

Index Terms—Decomposition, deferred acceptance procedure,
multiobjective evolutionary algorithm based on decomposition
(MOEA/D), multiobjective optimization, preference incorpora-
tion, stable matching.

I. INTRODUCTION

MULTIOBJECTIVE optimization problems (MOPs),
which naturally arise in many disciplines, such as

engineering [1], economics [2], and logistics [3], involve
more than one objective function to optimize. Since these
objectives often conflict with one another, no single solution
can optimize all the objectives at the same time. Pareto
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optimal solutions, which are their best tradeoff candidates,
can be of great interest to decision makers. A MOP can have
a set of different Pareto optimal solutions. Over the past
decades, much effort has been made to develop multiobjective
evolutionary algorithms (MOEAs) for approximating the set
of Pareto optimal solutions.

Selection is a major issue in designing MOEAs. Both
convergence and diversity are important for MOEAs to
obtain a good approximation to the set of Pareto opti-
mal solutions. It is desirable that the selection operator
can balance them. Based on the different selection strate-
gies, most current MOEAs can be classified into three
categories: 1) dominance-based MOEAs (e.g., [4]–[6]); 2)
indicator-based MOEAs (e.g., [7]–[9]); and 3) decomposition-
based MOEAs (e.g., [10]–[12]). Multiobjective evolutionary
algorithm based on decomposition (MOEA/D) is a pop-
ular decomposition-based MOEA. It decomposes a MOP
into a set of single objective optimization subproblems and
optimizes them in a collaborative manner. A number of
MOEA/D variants have been suggested and studied (e.g.,
[13]–[15]). In MOEA/D, the selection of solutions is decided
by their aggregation function values, and the population di-
versity is achieved by the wide spread of subproblems. If
we think of the subproblems and solutions as two different
agent sets, the selection in MOEA/D can be regarded as a
two-sided matching problem. Therefore, matching theory and
techniques [16] can be applied for designing the selection
operators of MOEA/D in a systematic and rational way. This
paper presents a first attempt along this direction.

Matching, first proposed and studied in a Nobel Prize
winning paper [17], has found many applications in various
fields (e.g., [18]–[20]). The stable marriage problem (SMP),
introduced in [17], is about how to match two sets of agents,
i.e., men and women. Each man ranks the women in the order
of his preferences, and vice versa. It is certainly undesirable if
a matching contains a man and woman who are not matched
together but prefer each other to their assigned spouses.
Such a pair make the matching unstable since they have
a clear incentive to break up from their current marriages
and marry each other instead. Therefore, a stable matching
should not have such a pair. Fig. 1 presents a simple marriage
market for example, where three men, m1, m2, m3, and three
women, w1, w2, w3, have listed their preference orderings
over the opposite sex. For example, for m1, [w1, w2, w3]
means that m1 ranks w1 first, w2 second, and w3 last. Fig. 1
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Fig. 1. Simple example of SMP, where the matching {(m1, w3), (m2, w1),
(m3, w2)} is stable but the matching {(m1, w2), (m2, w1), (m3, w3)} is unstable.

shows two matching results. One is connected by solid lines,
e.g., (m1, w3), the other one is connected by dashed lines,
e.g., (m1, w2). Obviously, the matching {(m1, w3), (m2, w1),
(m3, w2)} is stable, whereas the matching {(m1, w2), (m2, w1),
(m3, w3)} is unstable. This is because m2 prefers w3 to w1,
and w3 prefers m2 to her spouse m3.

This paper proposes using a simple and effective stable
matching (STM) model to implement the selection operator in
MOEA/D. Each subproblem agent in MOEA/D, by using its
aggregation function, ranks all solutions in the solution pool.
It prefers the solutions with better aggregation function values.
Therefore, the preferences of the subproblems encourage the
convergence. On the other hand, each solution agent ranks all
subproblems according to its distance to the direction vector
of these subproblems. The preferences of the solutions can
promote the diversity. Then, a matching algorithm can be used
to assign a solution to each subproblem. This assignment can
balance the preferences of subproblems and solutions, and thus
the convergence and diversity of the evolutionary search. We
also show that our proposed algorithm can easily accommodate
the preferences of a decision maker.

In the remainder of this paper, we first provide some back-
ground knowledge in Section II. Then, the technical details of
our selection operator, based on the STM model, are described
in Section III, and its incorporation with MOEA/D is presented
in Section IV. The experimental settings are provided in
Section V, and comprehensive experiments, including the
user-preference incorporation mechanism, are conducted and
analyzed in Section VI. Finally, conclusions of this paper and
some future research issues are given in Section VII.

II. BACKGROUND

This section first gives some basic definitions in multiob-
jective optimization. Then, we briefly introduce three widely
used decomposition approaches for MOPs.

A. Basic Definitions
A MOP can be mathematically defined as follows:

minimize F(x) = ( f1(x), f2(x), · · · , fm(x))T

subject to x ∈ �
(1)

where � = �n
i=1[ai, bi] ⊆ R

n is the decision (variable)
space, and x = (x1, · · · , xn)T ∈ � is a candidate solution.
F : � → R

m constitutes m real-valued objective functions
and R

m is called the objective space. The attainable objective
set is defined as the set � = {F(x)|x ∈ �}.

Definition 1: x1 is said to Pareto dominate x2, denoted by
x1 � x2, if fi(x1) ≤ fi(x2) for every i ∈ {1, · · · , m} and
fj(x1) < fj(x2) for at least one index j ∈ {1, · · · , m}.

Definition 2: A solution x∗ ∈ � is said to be Pareto optimal
if there is no other solution x ∈ � such that x � x∗.

Definition 3: The set of all the Pareto-optimal solutions is
called the Pareto-optimal set (PS). The set of all the Pareto-
optimal vectors, PF = {F(x) ∈ R

m |x ∈ PS}, is called the
Pareto front (PF).

Definition 4: The ideal objective vector z∗ is a vector z∗ =
(z∗1, · · · , z∗m)T , where z∗i = min

x∈� fi(x), i ∈ {1, · · · , m}.
Definition 5: The nadir objective vector znad is a

vector znad = (znad
1 , · · · , znad

m )T , where znad
i = max

x∈PS
fi(x),

i ∈ {1, · · · , m}.
Definition 6: Given a finite number of points x1, · · · , xn ,

a convex combination of these points is a point of the
form

∑n
i=1 wixi, where wi ≥ 0 for all i ∈ {1, · · · , n} and∑n

i=1 wi = 1.

B. Decomposition Approaches

Several approaches can be used to decompose the approx-
imation of the PF into a number of scalar optimization sub-
problems [10], [21]. In the following, we will briefly introduce
the three most commonly used decomposition approaches and
their search directions in the objective space.

1) Weighted Sum (WS) Approach: This approach considers
a convex combination of all the individual objectives. Let w =
(w1, . . . , wm)T be a weight vector where wi ≥ 0 for all i ∈
{1, . . . , m} and

∑m
i=1 wi = 1. Then, one optimal solution to

the following single objective optimization problem:

minimize gws(x|w) =
∑m

i=1 wi fi(x)
subject to x ∈ �

(2)

is a Pareto-optimal solution to (1). By using different weight
vectors in (2), one can obtain a set of different Pareto-optimal
solutions to approximate the PF when it is convex. This ap-
proach, however, may not be able to find all the Pareto-optimal
solutions in the case of nonconvex PFs (see [21, p.79]). The
search direction of the WS approach is w = (w1, . . . , wm)T as
shown in Fig. 2(a).

2) Tchebycheff (TCH) Approach: In this approach, the
single objective optimization problem is1

minimize gtch(x|w, z∗) = max
1≤i≤m
{| fi(x)− z∗i |/wi}

subject to x ∈ �.
(3)

For convenience, we allow wi = 0 in setting w, but replace
wi = 0 by wi = 10−6 in (3). The direction vector for this
subproblem is w = (w1, . . . , wm)T .

1The weight vector setting of the TCH approach in this paper is different
from that in [10]. As reported in some recent studies, e.g., [22] and [23], the
setting used in this paper can produce more uniformly distributed solutions
in the objective space.
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Fig. 2. Illustrations on three decomposition approaches. (a) WS. (b) TCH. (c) PBI.

3) Penalty-Based Boundary Intersection (PBI) Approach:
This approach is a variant of the normal-boundary intersection
method [24], whose equality constraint is handled by a penalty
function. More formally, a single objective optimization prob-
lem in this approach is defined as

minimize g pbi(x|w, z∗) = d1 + θd2

subject to x ∈ �
(4)

where θ > 0 is a user-defined penalty parameter, d1 =
‖(F(x)− z∗)Tw‖/‖w‖ and d2 = ‖F(x)− (z∗ + d1w)‖. As shown
in Fig. 2(c), L is a line passing through z∗ with direction w,
and p is the projection of F(x) on L. d1 is the distance between
z∗ and p and d2 is the perpendicular distance between F(x) and
L. The goal of this approach is to push F(x) as low as possible
so that it can reach the boundary of the attainable objective set.
The search direction of this subproblem is w = (w1, . . . , wm)T .

III. SELECTION OPERATOR

This section gives the technical details of the selection
operator based on the stable matching (STM) model. We also
discuss the selection operation in MOEA/D.

A. Selection Based on STM Model

In the MOEA/D framework used in this paper, a MOP is
decomposed into N subproblems, and each subproblem has
one solution in the current population. The selection process
is to choose the appropriate solution from a solution set S =
{x1, · · · , xM} (M > N) for each subproblem. Treating the
subproblem set P = {p1, · · · , pN} and S as two independent
agent sets, we propose using an STM model, which is derived
from the classical SMP introduced in Section I, to implement
the selection operator.

We assume that each agent has complete and transitive
preferences over agents on the other side. For simplicity, we
only consider the monotonic preference relations, which means
that an agent can rank all those agents on the other side in a
sequential order. Let xi �p x j denote that a given subproblem
p prefers solution xi to x j, and pi �x p j indicate that a given
solution x prefers subproblem pi to p j. A matching, which
has N subproblem-solution pairs, is called stable if and only
if the following two conditions hold.

1) If solution x is not paired with any subproblem, no
subproblem p prefers x to its current paired solution;

2) If solution x is paired with a subproblem but not p,
then x prefers its current partner to p, and p prefers its
current partner to x. In other words, pairing x and p
cannot make both of them better off than they are with
their current assigned partners.

Clearly, stable matching strikes a balance between the pref-
erences of subproblems and solutions. Therefore, one should
consider the convergence and diversity in setting preferences.
Different preference settings can lead to different ways of
balancing the convergence and diversity in the evolutionary
search. For simplicity, this paper defines the preferences in
the following way.

1) A subproblem p prefers solutions with low aggregation
function values. Therefore, the preference value of p
on solution x, denoted as �P(p, x), is defined as the
aggregation function value of x for p

�P(p, x) = g(x|w, z∗) (5)

where w is the weight vector of p and g(∗, ∗) is the
aggregation function used in MOEA/D.

2) x prefers subproblems whose direction vectors are close
to x. More specifically, the preference value of x on p,
denoted as �X(x, p), is defined as [25]

�X(x, p) = ‖F(x)− wTF(x)

wTw
w‖ (6)

where F(x) is the normalized objective vector of x, and
its kth individual objective function is normalized as

f k(x) =
fk(x)− z∗k
znad

k − z∗k
(7)

where k ∈ {1, · · · , m}. ‖ · ‖ is the �2 norm. �X(x, p)
indicates the distance between x and the direction vector
of p. As discussed in Section II-B, the optimal solution
of a subproblem should lie on its direction vector.
Therefore, a solution should prefer the subproblem that
is closer to it.

Using the above preference values, we can easily obtain two
preference ordering matrices of subproblems and solutions:
�P and �X . The elements of the ith row in �P are the
preference orderings of pi on all the solutions in S, and the
elements of the jth row in �X are the preference orderings
of x j on all the subproblems in P. Both of them are in the
ascending order of preference values. The pseudo-code of
computing �P and �X is presented in Algorithm 1.
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Algorithm 1: COMPTPREF(S, P, z∗, znad )
Input: solution set S, subproblem set P, the ideal and

nadir objective vectors z∗, znad

Output: preference ordering matrices �P and �X

1 for i← 1 to M do
2 F(xi)← F(xi)−z∗

znad−z∗ ;
3 end
4 for i← 1 to M do
5 for j← 1 to N do
6 �P(p j, xi)← g(xi|w j, z∗);
7 �X(xi, p j)← ‖F(xi)− wjT F(xi)

wjT w j w j‖;
8 end
9 end

10 Sort each row of �P and �X in ascending order and
keep the sorted indices in �P and �X;

11 return �P and �X

The deferred acceptance procedure suggested in [17] is
adopted in Algorithm 2 to find a stable matching between
subproblems and solutions, and thus to select a set of solutions
S from the solution set S. Algorithm 2 first initializes S as an
empty set in line 1 and sets all subproblems and solutions to
be free (i.e., not paired with any other agent on the other side)
from line 2 to line 12. In Algorithm 2, FP[i] = 0 means that
pi is free, and 1 means that it is paired. In the same way,
FX[j] indicates whether or not x j is free. 	(i, j) = 0 means
that pi has not proposed to pair with x j before, and 1 means
that it has done so. Line 13 calls Algorithm 1 to compute �P

and �X . In the main while-loop, when some subproblems are
still free, the algorithm randomly chooses such a subproblem
pi and finds out its highest ranked solution x j, to which pi

has not proposed yet (line 15 to line 16). If x j is also free,
then pi and x j will be paired with each other (line 19 to
line 21). In the case when x j is not free, x j will be broken
with its current partner pk and paired with pi if and only if
pi �x j pk (line 24 to line 25). The main while-loop terminates
when exactly N subproblem-solution pairs have been formed;
in other words, there is no free subproblem. The solutions
paired with subproblems form the output S.

Consider an example with five subproblems and 10 solutions
shown in Fig. 3(a). The preference ordering matrices of
subproblems and solutions, �P and �X , are as follows:

�X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5

4 5 3 2 1

1 2 3 4 5

1 2 3 4 5

2 3 1 4 5

3 4 2 5 1

3 4 2 5 1

4 5 3 2 1

5 4 3 2 1

5 4 3 2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

Algorithm 2: STM(S, P, z∗, znad )
Input: solution set S, subproblem set P, the ideal and

nadir objective vectors z∗, znad

Output: solution set S
1 S← ∅;
2 for i← 1 to N do
3 FP[i]← 0;
4 end
5 for j← 1 to M do
6 FX[j]← 0;
7 end
8 for i← 1 to M do
9 for j← 1 to N do

10 	(i, j)← 0;
11 end
12 end
13 [�P, �X]← COMPTPREF(S, P, z∗, znad );
14 while some subproblems are still free do
15 Randomly choose a subproblem pi with FP[i] = 0;
16 Find pi’s most preferred solution x j with 	(i, j) = 0;
17 	(i, j)← 1;
18 if FX[j] = 0 then
19 pi and x j are set to be paired;
20 S← S ∪ {x j};
21 FP[i]← 1, FX[j]← 1;
22 else
23 if pi �x j pk (the current partner of x j) then
24 pi and x j are set to be paired;
25 FP[i]← 1, FP[k]← 0;
26 end
27 end
28 end
29 return S

�P =

⎡

⎢
⎢
⎢
⎢
⎣

1 3 4 2 5 8 7 6 9 10
1 4 3 2 5 8 7 6 9 10
2 1 5 8 4 7 3 6 9 10
2 8 9 10 1 5 7 4 6 3
9 2 10 8 1 5 7 4 6 3

⎤

⎥
⎥
⎥
⎥
⎦

. (9)

Then, the stable matching produced by Algorithm 2 is
{(p1, x1), (p2, x4), (p3, x5), (p4, x2), (p5, x9)}. As a result, {x1,
x2, x4, x5, x9} will be selected to form S.

Following [17], we can have the following results.
Theorem 1: The matching generated by Algorithm 2 is

stable.
Proof: Note that a subproblem makes its proposals to

solutions according to the preference orderings in Algorithm
2. No subproblem prefers a free solution to its paired solution.
Therefore, the first condition in the stable matching definition
is met.

If solution x is paired with a subproblem p′ but not p, and if
p prefers x to its assigned partner, then p has made its proposal
to x. There are two possibilities. The first one is that x prefers
its then paired subproblem to p and has rejected p, and the
second possibility is that x has accepted p at some stage but
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Fig. 3. Illustrative examples of matching relationships. (a) Matching result obtained by STM model. (b) Matching result obtained by MOEA/D.

later left p for another subproblem. Note that a solution always
prefers its new partner to its previous ones in Algorithm 2.
We can conclude that the final matching generated meets the
second condition in the stable matching definition.

Theorem 2: If x is the best solution in S for a suproblem,
then x ∈ S̄.

Proof: If x is the unique best solution in S for p, then p
will make its first proposal to x in Algorithm 2. If x is added
to S̄ in Algorithm 2, x will not be removed from S̄. Therefore,
x ∈ S̄.

Theorem 1 implies that Algorithm 2 is able to balance the
preferences of both subproblem agents and solution agents.
Subproblem agents’ preferences encourage the search conver-
gence and solution agents’ preferences promote the population
diversity. Therefore, Algorithm 2 provides a systematic and
rational approach for trading off the convergence and diversity
in MOEAs. On the other hand, Theorem 2 guarantees that
each subproblem can be optimized as much as possible in
each generation.

B. Discussions

In the original MOEA/D proposed in [10], the matching
relationship is randomly assigned at first and gradually refined
during the evolutionary search. Each solution is associated
with a different subproblem, and neighborhood relationships
among all the subproblems are defined beforehand. A new
solution x is generated by using the information extracted from
solutions of the neighboring subproblems of a subproblem
p. x will replace the solutions of one or more neighboring
subproblems if x has a better aggregation function value
for these subproblems. In a sense, only the subproblems
have their preferences on solutions, while solutions have not
explicitly expressed their preferences on subproblems. Thus,
the established matching relationship may not be stable.

For example, consider the same case in Fig. 3(a), the
selection of the original MOEA/D may produce a matching
{(p1, x1), (p2, x4), (p3, x2), (p4, x8), (p5, x9)}, as shown in
Fig. 3(b). However, p4 �x2 p3, x2 �p4 x8, in other words, x2

and p4 prefer each other to their assigned partners. Therefore,
this matching is not stable. In addition, x5, which is located
in the subregion between the direction vectors of p2 and p3

(highlighted as the dotted lines), is important for preserving

the population diversity. In contrast to the matching result of
Algorithm 2, x5 is not selected by MOEA/D. Therefore, the
solutions selected by Algorithm 2 have a better spread over
the objective space.

C. Computational Cost of STM Model

Let us first consider the computational cost of Algorithm 1,
which obtains the preference ordering matrices of subproblems
and solutions. The normalization of the objective function val-
ues of each solution (line 1 to line 3 in Algorithm 1) requires
O(mM) computations. Next, the calculation of the mutual
preferences between subproblems and solutions (line 4 to line
9 in Algorithm 1) costs O(mMN) computations. Finally, sort-
ing �P and �X (line 10 in Algorithm 1) requires O(NMlogM)
and O(MNlogN) comparisons, respectively. Therefore, the
overall complexity of Algorithm 1 is O(NMlogM), since
M = 2N in our case. Consider the main body of the STM
model given in Algorithm 2, the initialization process (line 1
to line 12 in Algorithm 2) requires O(NM) assignments. Then,
the evaluations of �P and �X cost O(NMlogM) operations as
discussed before. At last, similar to the discussion of [17], the
worst case complexity of the deferred acceptance procedure
(the main-while loop, from line 14 to line 28, in Algorithm 2)
is O(NM). In summary, the computational cost of the STM
model is O(NMlogM).

IV. INTEGRATION OF STM MODEL WITH MOEA/D

In this section, we present an instantiation of MOEA/D,
which uses the selection operator proposed in Section III.
This instantiation, referred to as the MOEA/D-STM, is derived
from MOEA/D-DRA [14], a MOEA/D variant with a dynamic
resource allocation scheme. MOEA/D-DRA was the winner
in the CEC2009 MOEA competition [26]. It is worthwhile
noting that the only difference between MOEA/D-STM and
MOEA/D-DRA is in selection. The pseudo-code of MOEA/D-
STM is given in Algorithm 3. Some important components of
MOEA/D-STM are further illustrated in the following.

A. Initialization

We assume that we have no prior knowledge about the
position of the PS. The initial population P1 = {x1, · · · , xN}
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Fig. 4. Fifteen weight vectors are sampled from the simplex in the 3-D space
with H = 4.

is randomly sampled from the decision space. Since the ideal
and nadir objective vectors are unknown a priori, we use
their approximations that are respectively set as the minimum
and maximum F-function values on each objective in the
current population, i.e., z∗i = min{ fi(x)|x ∈ Pt } and znad

i =
max{ fi(x)|x ∈ Pt }, for all i ∈ {1, · · · , m}, where t is the
generation counter.

In generating a set of weight vectors, each element of a
weight vector w takes its value from { 0

H , 1
H · · · , H

H }, where
H is a user-defined integer. The total number of such weight
vectors is N = Cm−1

H+m−1. Fig. 4 illustrates the weight vectors
generated by setting m = 3 and H = 4. In this case, N = 15
evenly distributed weight vectors are generated. In MOEA/D,
each weight vector is given a neighborhood, which includes
its T (1 ≤ T ≤ N) nearest weight vectors.

B. Reproduction

Reproduction operator is to generate an offspring population
Qt = {x̄1, · · · , x̄N} of N members from population Pt . Any
genetic operator or mathematical programming technique can
serve this purpose. In this paper, we use the differential
evolution (DE) operator [27] and polynomial mutation [28] as
in [13]. More specifically, let xr1 , xr2 , and xr3 be three parent
solutions, an offspring solution x̄i = (x̄ i

1, · · · , x̄ i
n) is generated

as follows:

ui
j =

{
xr1

j + F × (xr2
j − xr3

j ) if rand < CR or j = jrand

x i
j otherwise

(10)
where j ∈ {1, · · · , n}, rand ∈ [0, 1], CR and F are two control
parameters and jrand is a random integer uniformly chosen
from 1 to n. Then, the polynomial mutation is applied on
each ui to generate x̄i

x̄ i
j =

{
ui

j + σj × (bj − aj) if rand < pm

ui
j otherwise

(11)

with

σj =

{
(2× rand)

1
η+1 − 1 if rand < 0.5

1− (2− 2× rand)
1

η+1 otherwise
(12)

where the distribution index η and the mutation rate pm are
two control parameters. aj and bj are the lower and upper
bounds of the jth decision variable. For simplicity, the violated
decision variable is set to its nearer boundary value.

C. Utility of Subproblem

The utility of subproblem pi, denoted as π i, where i ∈
{1, · · · , N}, measures how much improvement has been
achieved by its current solution xnew in reducing the aggre-
gation function value of pi. Formally, it is defined as [14]

π i =

{
1 if �i > 0.001

(0.95 + 0.05× �i

0.001 )× π i otherwise
(13)

where �i represents the relative decrease of the aggregation
function value of pi, and it is evaluated as

�i =
g(xold |wi, z∗)− g(xnew|wi, z∗)

g(xold |wi, z∗)
(14)

where xold is the solution of pi in the previous generation.

V. EXPERIMENTAL SETTING

A. Test Instances

Ten unconstrained MOP test instances from the CEC2009
MOEA competition [26] (UF1 to UF10) are used in our
experimental studies. The number of decision variables of the
UF instances is set to be 30.

B. Performance Metrics

No unary performance metric can give a comprehensive
assessment on the performance of a MOEA [29], [30]. In
our experimental studies, we employ the following two widely
used [31], [32] performance metrics.

1) Inverted Generational Distance (IGD) metric [33]: Let
P∗ be a set of points uniformly sampled along the PF,
and S be the set of solutions obtained by some given
MOEA. The IGD value of S is calculated as

IGD(S, P∗) =

∑
x∈P∗ dist(x, S)

|P∗| (15)

where dist(x, S) is the Euclidean distance between the
solution x and its nearest point in S, and |P∗| is the cardi-
nality of P∗. The PF of the underlying MOP is assumed
to be known a priori when using the IGD metric. In our
empirical studies, 1000 uniformly distributed points are
sampled along the PF for the bi-objective test instances,
and 10 000 for three-objective cases, respectively.

2) Hypervolume (HV) metric [34]: Let zr = (zr
1, . . . , zr

m)T

be a reference point in the objective space that is domi-
nated by all Pareto-optimal objective vectors. HV metric
measures the size of the objective space dominated by
the solutions in S and bounded by zr

HV(S) = VOL(
⋃

x∈S

[ f1(x), zr
1]× . . . [ fm(x), zr

m]) (16)
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Algorithm 3: MOEA/D-STM

1 Initialize the population P← {x1, · · · , xN}, a set of
weight vectors W ← {w1, · · · , wN}, the ideal and nadir
objective vectors z∗, znad ;

2 Set neval ← 0, iteration← 0;
3 for i← 1 to N do
4 B(i)← {i1, · · · , iT} where wi1 , · · · , wiT are the T

closest weight vectors to wi;
5 π i ← 1;
6 end
7 while Stopping criterion is not satisfied do
8 Let all indices of the subproblems whose objectives

are MOP individual objectives fi form the initial I.
By using 10-tournament selection based on π i, select
other �N/5� − m indices and add them to I.

9 Q← ∅;
10 for each i ∈ I do
11 if uniform(0, 1) < δ then
12 E← B(i);
13 else
14 E← P;
15 end
16 Randomly select three solutions xr1 , xr2 , and xr3

from E;
17 Generate a candidate x̄ by using the method

described in Section IV-B and Q← Q
⋃{x̄};

18 Evaluate the F-function value of x̄;
19 Update the current ideal objective vector z∗;
20 Update the current nadir objective vector znad ;
21 neval++;
22 end
23 R← P ∪ Q;
24 P← STM(R, W, z∗, znad );
25 iteration++;
26 if mod(iteration, 30) = 0 then
27 Update the utility of each subproblem;
28 end
29 end
30 return P;

where VOL(·) is the Lebesgue measure. In our empirical
studies, zr = (2.0, 2.0)T for bi-objective test instances
and zr = (2.0, 2.0, 2.0)T for three-objective cases,
respectively.

To a certain extent, both IGD and HV metrics can measure
the convergence and diversity of S. The lower the IGD value
is (the larger the HV value is), the better the quality of S
for approximating the whole PF. In the comparison tables
of the following sections, the best mean metric values are
highlighted in bold face with gray background. In order to
have statistically sound conclusions, Wilcoxon’s rank sum
test at a 5% significance level is conducted to compare the
significance of difference between the metric values of two
algorithms.

C. MOEAs in Comparison

Five MOEAs are used in this paper to compare with our
proposed algorithm.

1) NSGA-II [4]: it is the most popular dominance-based
algorithm. It is characterized by its fast nondominated
sorting procedure for emphasizing the convergence and
its crowding distance for maintaining population di-
versity. As in [13], we use the reproduction method
described in Section IV-B to generate new solutions.

2) MSOPS-II [35]: it is a decomposition-based MOEA.
As an extension of MSOPS [12], it is featured by
an automatic target vector generation scheme and an
improved fitness assignment method.

3) HypE [9]: it is a well known indicator-based MOEA,
which uses the HV metric as the guideline of its se-
lection process. In order to reduce the computational
cost in its HV calculation, HypE employs Monte Carlo
simulation to approximate the HV value.

4) MOEA/D-DE [13]: it is a variant of MOEA/D [10]. It
uses the reproduction method described in Section IV-B
to generate new solutions. In order to maintain the
population diversity, a new solution is allowed to replace
only a small number of old solutions.

5) MOEA/D-DRA [14]: it is another variant of MOEA/D,
which won the CEC2009 MOEA competition. In this
algorithm, different subproblems will receive different
computational resources based on their utility values.

In MOEA/D-STM, MOEA/D-DE, and MOEA/D-DRA, the
TCH approach explained in (3) is adopted as the decomposi-
tion method.

D. General Parameter Settings

The parameters of NSGA-II, MSOPS-II, HypE, MOEA/D-
DE, and MOEA/D-DRA are set according to their corre-
sponding references [4], [9], [13], [14], [35], respectively. All
these MOEAs are implemented in JAVA,2 except MSOPS-II
in MATLAB,3 and HypE in ANSI C.4 The detailed parameter
settings of our proposed MOEA/D-STM are summarized as
follows.

1) Settings for reproduction operators: The mutation proba-
bility pm = 1/n and its distribution index is set to be 20,
i.e., μm = 20 [36]. For the DE operator, we set CR = 1.0
and F = 0.5 as recommended in [13].

2) Population size: N = 600 for bi-objective test instances,
1000 for the three-objective ones.

3) Number of runs and stopping condition: Each algorithm
is run 30 times independently on each test instance. The
algorithm stops after 300 000 function evaluations.

4) Neighborhood size: T = 20.
5) Probability used to select in the neighborhood: δ = 0.9.

2The source codes are from the jMetal 4.2 at http://jmetal.sourceforge. net.
3The source code is from http://code.evanhuges.org.
4The source code is from http://www.tik.ee.ethz.ch/sop/download/

supplementary/hype/.
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TABLE I

IGD RESULTS OF MOEA/D-STM AND FIVE OTHER MOEAS ON UF TEST INSTANCES

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-STM and each of the other competing algorithms. † and ‡ denotes that
the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-STM, respectively. The best mean is highlighted
in boldface with gray background. UF1 to UF7 have two objectives and UF8 to UF10 have three objectives.

TABLE II

HV RESULTS OF MOEA/D-STM AND FIVE OTHER MOEAS ON UF TEST INSTANCES

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-STM and each of the other competing algorithms. † and ‡ denote whether
the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-STM, respectively. The best mean is highlighted
in boldface with gray background. UF1 to UF7 have two objectives and UF8 to UF10 have three objectives.

VI. EMPIRICAL RESULTS AND DISCUSSION

A. Performance Comparisons With Other MOEAs

Comparison results of MOEA/D-STM with the other five
MOEAs in terms of IGD and HV metric values are presented
in Tables I and II. From these results, it is clear that MOEA/D-
STM has obtained the best mean metric values on all the
test instances except UF10. UF10 has many local PFs. No
algorithm can approximate its PF very well. MOEA/D-DE and
MOEA/D-DRA have demonstrated much better performance
than MSOPS-II on all test instances except UF10. NSGA-II
is better than MSOPS-II and HypE on most test instances.
The indicator-based algorithm, HypE, performs worse than
MOEA/D-STM on all test instances.

Figs. 5–9 plot the evolution of the median IGD metric value
versus the number of function evaluations in each algorithm on
each test instance. A typical phenomenon observed from these

figures is that MOEA/D-STM, which is often not the best at
early stage, can win other algorithms at late stage. This could
be due to the fact that MOEA/D-STM does try to promote and
balance both the convergence and population diversity via its
selection throughout the entire search process, whereas other
MOEAs often promote the convergence at their early search
stage and the population diversity at their late search stage. For
most test instances, other algorithms can easily stagnate due to
the loss of population diversity after a number of generations,
while MOEA/D-STM can still make progress with its well
maintained population diversity.

B. STM Model Versus Other Matching Variants

In order to further investigate the underlying rationality
of the STM model, we compare it with the following two
different matching schemes.



LI et al.: STABLE MATCHING-BASED SELECTION IN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION 917

Fig. 5. Evolution of the median IGD metric values versus the number of function evaluations.

Fig. 6. Evolution of the median IGD metric values versus the number of function evaluations.

Fig. 7. Evolution of the median IGD metric values versus the number of function evaluations.
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Fig. 8. Evolution of the median IGD metric values versus the number of function evaluations.

Fig. 9. Evolution of the median IGD metric values versus the number of function evaluations.

TABLE III

PERFORMANCE COMPARISONS OF MOEA/D-STM AND ITS TWO VARIANTS

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-STM Variant-I and Variant-II. † and ‡ denote whether the performance
of the corresponding algorithm is significantly worse than or better than that of MOEA/D-STM, respectively. The best mean is highlighted in boldface with
gray background. UF1 to UF7 have two objectives and UF8 to UF10 have three objectives.
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Fig. 10. Evolution of the median IGD metric values versus the number of function evaluations. (a) Comparisons with 300 000 function evaluations.
(b) Comparisons with 600 000 function evaluations.

1) Variant-I: Instead of finding the stable matching between
subproblems and solutions, in this variant, each subprob-
lem chooses the best solution (in terms of its aggregation
function value) in S as its solution. In this case, different
subproblems can be assigned with the same solution.

2) Variant-II: The only difference of this variant from
Algorithm 2 is that a solution agent, instead of a
subproblem agent, makes a proposal to its most preferred
agent of the other side that has not rejected it before.
The pseudo-code of this variant is given in Algorithm 4,
where χ (i, j) = 0 indicates that xi has not proposed to
pair with p j before, and 1 means that it has done so.
The main while-loop in Algorithm 4 (line 14 to line 28)
terminates when the number of free solutions is equal
to the number of subproblems.

We have developed two MOEA/D variants by replacing the
STM model in MOEA/D-STM with the above two variants.
With the same parameter settings as in Section V-D, these two
variants have been experimentally compared with MOEA/D-
STM on the UF test instances. The experimental results, in
terms of IGD and HV metric values, are presented in Table III.
To be specific, Variant-I adopts a very greedy strategy and
matches each subproblem with its best solution in S. From
the experimental results, we can observe that the performance
of Variant-I is poorer than MOEA/D-STM on eight out of
ten instances. This could be because Variant-I can match the
same solution with several different subproblems and lead to
the loss of population diversity. Particularly on UF10, although
Variant-I outperforms MOEA/D-STM, the solutions obtained
by both algorithms are still far away from the real PF as
indicated by their IGD and HV values. It is evident from
Table III that Variant-II cannot do better than MOEA/D-
STM on any test instance. The major reason could be that
subproblem agents make proposals to solution agents in the
STM model and therefore, can select the best solution for
each subproblem as shown in Theorem 2, while Variant-II
does it in an oppositive way and is unable to keep all the elite
solutions.

C. More Investigations on STM model

The experimental studies in Sections VI-A and VI-B have
shown that the MOEA/D-STM is poorer than some other
algorithms only on UF2 and UF10 with 300 000 function
evaluations. Fig. 10(a) compares the evolution of the median
IGD metric value versus the number of function evaluations

Algorithm 4: VARIANT-II(S, P, z∗, znad )
Input: solution set S, subproblem set P, the ideal and

nadir objective vectors z∗, znad

Output: solution set S
1 S← ∅;
2 for i← 1 to N do
3 FP[i]← 0;
4 end
5 for j← 1 to M do
6 FX[j]← 0;
7 end
8 for i← 1 to N do
9 for j← 1 to M do

10 χ (i, j)← 0;
11 end
12 end
13 [�P, �X]← COMPTPREF(S, P, z∗, znad );
14 while some solutions are still free do
15 Randomly choose a solution xi with FX[i] = 0;
16 Find xi’s most preferred subproblem p j with

χ (i, j) = 0;
17 χ (i, j)← 1;
18 if FP[j] = 0 then
19 xi and p j are set to be paired;
20 S← S ∪ {xi};
21 FX[i]← 1, FP[j]← 1;
22 else
23 if xi �p j xk (the current partner of p j) then
24 xi and p j are set to be paired;
25 FX[i]← 1, FX[k]← 0;
26 end
27 end
28 end
29 return S

of MOEA/D-STM and Variant-I on these two test instances.
Clearly, the IGD value of MOEA/D-STM is still in a trend to
decrease at the late search stage whereas this is not the case
for Variant-I. A question naturally arises: can MOEA/D-STM
perform better than other algorithms with a larger number
of function evaluations on UF2 and UF10? To answer this
question, we have tested MOEA/D-STM, Variant-I, and the
five MOEAs introduced in Section V-C on UF2 and UF10
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TABLE IV

IGD RESULTS ON UF2 AND UF10 WITH 600 000 FUNCTION EVALUATIONS

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-STM and each of the other competing algorithms. † and ‡ denote whether
the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-STM, respectively. The best mean is highlighted
in boldface with gray background. UF2 has two objectives and UF10 has three objectives.

TABLE V

HV RESULTS ON UF2 AND UF10 WITH 600 000 FUNCTION EVALUATIONS

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-STM and each of the other competing algorithms. † and ‡ denote whether
the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-STM, respectively. The best mean is highlighted
in boldface with gray background. UF2 has two objectives and UF10 has three objectives.

TABLE VI

PERFORMANCE COMPARISONS OF MOEA/D-STM WITH MOEA/D-DE AND MOEA/D-DRA (nr = 1)

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-STM and MOEA/D-DE and MOEA/D-DRA. † and ‡ denote whether
the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-STM, respectively. The best mean is highlighted
in boldface with gray background. UF1 to UF7 have two objectives and UF8 to UF10 have three objectives.

with 600 000 function evaluations. Tables IV and V present
the experimental results. Clearly, MOEA/D-STM beats all
other algorithms. Fig. 10(b) plots the evolution of the median
IGD metric value versus the number of function evaluations
of MOEA/D-STM and Variant-I on UF2 and UF10. These
figures indicate that MOEA/D-STM outperforms Variant-I
after around 480 000 function evaluations.

MOEA/D-DE and MOEA/D-DRA use a steady-state man-
ner to update their populations and allow one new solu-
tion to replace more than one old solution, which could
decrease their population diversity. In contrast, MOEA/D-STM
pairs each subproblem with one single solution and thus
different subproblems have different solutions. Another issue
is whether we can improve the performance of MOEA/

D-DE and MOEA/D-DRA by only allowing at most one
old solution to be replaced by each offspring (i.e., set the
parameter nr = 1 in MOEA/D-DE and MOEA/D-DRA). We
have tested MOEA/D-DE and MOEA/D-DRA with nr = 1
(the other parameters are set the same as in Section V-D)
and compared both of them with MOEA/D-STM. From the
experimental results shown in Table VI, one can observe that
the performance of MOEA/D-DE and MOEA/D-DRA can
be improved by setting nr = 1 on UF1, UF3, UF6, and
UF8. Nevertheless, MOEA/D-STM is still the best on most
test instances. Therefore, it can be concluded that the good
performance achieved by MOEA/D-STM does come from its
stability in matching, which well maintains the population
diversity.
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TABLE VII

SETTINGS OF REFERENCE POINTS

Fig. 11. Nondominated solutions in the preferred regions found by r-MOEA/D-STM.

D. Preference Incorporation by STM Model
A decision maker (DM) may have some preferences on

solutions. It is widely accepted that using DM preference in-
formation in MOEAs can potentially reduce the computational
overheads and drive the search toward a particular area that
is desirable to the DM. A DM may provide a reference point
in the objective space as her preference information [37]. In
the following, we make a very preliminary study to investigate
whether the reference point information can make MOEA/D-
STM approximate the regions that the DMs are interested
in.

Let r be a reference point in the objective space pro-
vided by the DM. Then, we use the method described in
Section IV-A to generate K weight vectors. Among them, N
weight vectors closest to r are chosen to define N subprob-
lems for MOEA/D-STM. We call this algorithm r-MOEA/D-
STM. Experimental studies have been conducted on a set of
benchmark problems including the bi-objective ZDT [38] and

the three-objective DTLZ [39] test instances with different
characteristics such as multimodality (e.g., ZDT4, DTLZ1,
and DTLZ3), discontinuous PF (e.g., ZDT3 and DTLZ7),
degeneration (e.g., DTLZ5 and DLTZ6), and bias mapping
(e.g., ZDT6, DTLZ4 and DTLZ6). K = 1 000 and N = 100
are set in our experiments. The total number of function
evaluations is 20 000 for the bi-objective test instances, and
30 000 for the three-objective ones except DTLZ3, where
100 000 function evaluations are used due to its difficulties.
The other parameters of r-MOEA/D-STM are the same as in
Section V-D except CR = F = 0.5.

The reference points used in our experiments, which include
both feasible and infeasible ones, are provided in Table VII.
From the experimental results shown in Fig. 11, it can be
concluded that r-MOEA/D-STM is able to obtain a good
distribution of solutions near the provided reference points
for all test instances. It indicates that the reference point
information can be very useful for guiding MOEA/D-STM.
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VII. CONCLUSION

MOEA/D decomposes a MOP into a number of single
objective optimization subproblems and optimizes them in a
collaborative manner. In MOEA/D, each subproblem is paired
with a solution in the current population. Stable matching,
proposed by economists, has solid theoretical foundations and
has been used in various fields. This paper treats subproblems
and solutions in MOEA/D as two different sets of agents.
Therefore, selection in MOEA/D can be naturally modeled as
a matching problem. In our approach, a subproblem prefers
solutions that can lower its aggregation function value, and a
solution prefers subproblems whose direction vectors are close
to it. Therefore, the subproblem preference encourages conver-
gence whereas the solution preference promotes population
diversity. We have proposed using the STM model to balance
these two preferences and, thus, the convergence and diversity
of the evolutionary search. Extensive experimental studies
have been conducted to compare our proposed MOEA/D-STM
with other MOEAs, and to investigate the ability and behavior
of MOEA/D-STM.

This paper presents a first attempt at using matching theory
and techniques to enhance evolutionary algorithms. In the fol-
lowing, we list several possible research issues along this line.

1) We believe that some other issues in evolutionary com-
putation can also be modeled and tackled as matching
problems. For example, mating selection can also be
regarded as a matching problem. Specifically, unlike uni-
sexual populations used in classical EAs, solutions can
be assigned with different genders. Therefore, mating
selection becomes a sexual selection [40] that matches
each male solution with its ideal spouse.

2) In the STM model used in this paper, the resulting stable
matching always favors the agents who make proposals.
It is desirable in many cases to find a “fair” stable
matching that does not favor either side. Some efforts
have been made in economics on this direction, such as
egalitarian stable matching [41], which minimizes the
total rank sum of the outcome in the marriage model.
It should be very interesting to study the use of these
models in evolutionary computation.
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