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Abstract 

Evolutionary algorithms (EAs) are well-known 
optimization approaches to deal with nonlinear and 
complex problems. However, these population-based 
algorithms are computationally expensive due to the 
slow nature of the evolutionary process. This paper 
proposes an improved differential evolution algorithm 
(CDE). On the one hand CDE combines the ad- 
vantages of DE with the mechanisms of Pareto based 
ranking and crowding distance sorting which are 
similar to the NSGA-II, on the other hand different 
from the previous DE, CDE compares the trial vector 
to its nearest neighbor to decide whether to preserve it. 
Experimental results confirm that CDE outperforms 
the other two classical multi-objective evolutionary 
algorithms (MOEAs) NSGA-II and SPEA2 in terms of 
diversity and convergence. 

1. Introduction 

Most real-world problems involve the simultaneous 

optimization of two or more (often conflicting) 

objectives. The solutions of such problems are different 

from that of a single-objective optimization problems 

normally have not one but a set of solutions which are 

all equally good. 

In recent years, many algorithms for multi-objective 

optimization have been introduced. Among these, the 

NSGA-II by Deb et al. [1] and SPEA2 by Zitzler et al. 

[2] are most popular. Differential evolution (DE) is a 

simple yet powerful evolutionary algorithm (EA) for 

global optimization introduced by Price and Storn 

[5][6]. The DE algorithm has gradually become more 

popular and has been used in many practical cases, 

mainly because it has demonstrated good convergence 

properties and is principally easy to understand. 

In this paper, we propose an improved differential 

evolution algorithm. Different from the previous DE，in 

our algorithm the way we decide whether to keep the 

trial vector lies in comparing to its nearest neighbor. 

We combine the pruning mechanism used in the 

NSGA-II with the advantages of DE to keep the 

diversity of obtained solutions. Mutation operation is 

an omitted evolutionary step in the previous DE. We 

are trying to integrate mutation operation into our 

algorithm, for the purpose of speeding up the 

convergence. 

The remainder of this paper is organized as follows: 

Section 2 provides some basic definitions of multi- 

objective optimization. Afterwards, a brief introduction 

of DE is described in Section 3. Section 4 presents our 

proposed CDE. Section 5 provides the test problems 

used in our experiment. Our comparison of results and 

some discussions are provided in Section 6. Finally, 

Section 7 contains the conclusions and some possible 

extension for our future research. 

2. Definitions 

Different from the single objective optimization 

problems, MOEA goals to converge to the Pareto front 

fast and spread uniformly. Some related basic 

definitions are introduced next. 

Definition 1. Multi-objective optimization prob- 
lem (MOP) The multi-objective optimization can be 
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formally defined as the problem to find a vector 

* * * *
1 2[ , , , ]T

nx x x x=
G

"  which satisfies m inequality 

constraints: 

( ) (1)0; , ,                1i xg i m≤ =
G

"  

p equality constraints: 
( ) (2)0; , ,                 1i xh i p≤ =
G

"  

and optimizes the vector function: 

( ) ( ) ( )1 2 (3), , ,             kx x xf f f
G G G

"  

Definition 2. (Pareto dominance) Pareto 
dominance is formally defined as follows: A vector 

( )1 , , ku u u= "
G  is said to dominate ( )1 , , kv v v= "

G  if and 

only if u
G

 is partially less than v
G

, i.e. 
(1, , ), (1, , ) :i i i ii k u v i k u v∀ ∈ ≤ ∧ ∃ ∈ <" "  

Definition 3. (Pareto optimality) The definition of 
Pareto optimality is provided next: A solution 

ux ∈
JJK

F  

(where F  is the feasible region) is said to be Pareto 
optimal if and only if there is no 

vx ∈
JJK

F  which makes 

1( ) ( , , )v kv f x v v= = "  dominate 
1( ) ( , , )u ku f x v v= = " , 

where k is the number of objectives. 
Definition 4. (Pareto front) When all nondomi- 

nated solutions are plotted in the objective space, the 
non-dominated vectors are collectively known as the 
Pareto front. For a given MOP ( )f x

JK
 and Pareto 

optimal set P*, the Pareto front (PF*) is defined as: 

1 (4)* : { [ ( ), , ] | *}      kf f f PPF x x= = ∈"
JK

 

3. Differential Evolution 

Differential Evolution is a branch of evolutionary 
algorithms (EAs) which was designed by Price and 
Storn[5][6] to optimize problems over continuous 
domains. In DE, each decision variable is represented 
in the chromosome by a real number. Like other 
evolutionary algorithms (EAs), it starts with an initial 
population vector, which is randomly generated when 
no preliminary knowledge about the solution space is 

available. Let us assume that ( ), 1, 2, ,ri G pX i N= "  are 

solution vectors in generation G (
pN  is the population 

size). The offspring are generated by adding the 
weighted difference vector between two parents to a 
third parent. Formally, the process is described as 

follows. For each vector ( ), 1, 2, ,Gri pX Ni = " , a trial vector 

,ri GU  generated according to: 

, 1, 2, 3,( )         (5)ri G r G r G r GU X F X X= + ⋅ −  

with [ ], , 0,  1 r1 r2 r3 pN∈ − , F > 0. 

The integers r1, r2 and r3 are chosen randomly from 

the interval 0,  1pN −⎡ ⎤⎣ ⎦  which are different from ri. F is 

a constant factor that controls the amplification of the 

differential variation
2, 3,( )  r G r GX X− . Figure 1 shows a 

two dimensional example that illustrates the different 
vectors which play a role in DE. 

 
Figure 1. Two dimensional example of the process 

for generating offspring 

4. Our proposed algorithm 

Our corresponding pseudo-code of the proposed 
approach (CDE) is shown in the appendix. 

In our algorithm, we use the same user defined 
parameters CR and F which are commonly used in 
previous researches. CR controls the rate of crossover 
and F is a constant factor which control the 

amplification of the differential variation 
2, 3,( ) r G r GX X− . 
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During the process of the algorithm CR controls total 
rate of evolutionary operation, and F controls the 
convergence speed and robustness of DE. Experiment 
confirms that a small value of F could speed up the 
convergence, but it also easily lead the algorithm 
trapped in a local optimal [3][4]. In addition, a new 
parameter MUT is added to our CDE, it controls the 
rate of mutation operation, we set the MUT to the 
countdown of population size. 

Different from the common DE, we compare the 
dominance relation between the trial vector and the 
nearest vector to it instead of the sign vector. That is to 
say, if the trial vector dominates the vector which is 
nearest to it, the trial vector will replace it. On the 
contrary we will drop the trial vector and reserve the 
sign vector into the next generation. But if the trial 
vector is non-dominated to the sign vector, we add the 
trial vector into a temporary population. After a 
generation, the temporary population and the new 
produced population are merged into a new hybrid 
population. Clearly, the size of the hybrid population 
may increase, so we have to remove the unexpected 
solutions from the hybrid population until the size of 
the hybrid population get the original size we have set 
before. The removing operation is based on the 
dominance level and the crowding distance which is 
similar to the pruning mechanism used in NSGA-II. 
Besides, there is no mutation operation in the 
traditional DE, but as we know that mutation is an 
indispensable step in evolutionary algorithms (EAs). 
So we attempt to add a mutation operator in our 
approach which is implemented as expression (6): 

( ) [0, 1) ( ( ) ( ))                   (6)i i ilower rand upper lowerx x x+ × −  

During the process of our algorithm, we find that the 
trial vector may exceed its boundary, and then such 
trial vector turns invalid. So we use a repair rule which 
makes the trial vector return to its boundary. The repair 
rule is shown in expression (7). 

, , 1

*
, , , 1

, 1

( ) ( ( )) 2      ( )

( ) ( ( )) 2     ( )

   

(7)     

j j
i i G i i G i

j j
i G g i i G i i G i

j
i G

l if

if

upper ower lower

lower upper upper

otherwise

x x x x

x x

x

x x

x

x x
+

= +

+

+ − <

= + − >

⎧
⎪
⎨
⎪
⎩

 

5. Test problems and performance 
indices 

We test CDE on two dimensions and three 
dimensions cases separately, and we compare the 
experimental results with two classical algorithms 
NSGA-II and SPEA2. 

5.1. Parameter Setting 
All MOEAs are given real-valued decision variables. 

A crossover probability of Pc=0.8 and a mutation 
probability Pm=1/n (where n is the number of decision 
variables) are used. The operators for crossover and 
mutation are simulated binary crossover (SBX) and 
polynomial mutation, with distribution indexes of ηc = 
15，ηm = 20, respectively. In CDE, we set CR = 0.95, F 

= 0.4, MUT = 1/
pN . 

5.2. Function used 
The test bed is formed by a total of eight functions. 

They are ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, DTLZ-2, 
SCH, FON [8][9][10]. 

5.3. Performance metrics 
All MOEAs in this paper are measured using 

spacing index (SP) [8]. The spacing measures the 
standard deviation of distances from each vector to the 
nearest vector in the non-dominated set as expression 
(8): 

2
1 (8)( )                      

1

1
n

iiSP d d
n == −

−
∑  

( )1 1 2 2( ) ( ) ( ) ( ) 1min          , , ,i i i i
i j f x f x f x f xd i j n− + −= = "  

d  is the mean of all di, and n is the known size of the 

Pareto frontier.  
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The other metric is the Generation Distance (GD) [7] 
which measures the distance between the obtained 
non-dominated front Q and the set P* of Pareto optimal 
solutions as expression (9): 

2
1 (9)                             

n
ii d

G D
n
== ∑  

n is the number of individual in the obtained non- 
dominated front Q, where di is again the Euclidean 
distance (in the objective space) between the solution 
i�Q and the nearest member of P*. 

6. Simulation results and discussions 

To compare these methods, we have carried out 20 
independent runs, and the Table 1 which is given in the 
Appendix includes the average and standard deviation. 
The best metric values are shown bold.  

The PFture of test problem SCH is an arc in [0, 4]. 
Table 1 shows that CDE owns the best GD and SP 
values. Test problem FON has a concave Pareto- 
optimal front. Table 1 shows that CDE owns the best 
SP value and NSGA-II owns the best GD value. Test 
problem ZDT1, ZDT2, ZDT3 all have 30 decision 
variables, and ZDT3 is a non-continuous problem. 
From Table 1 we can see that all the SP values of CDE 
are the best. Test problem ZDT4 is a difficult test 
problem as it has 219 local optimal, so it easily traps the 
MOEAs in local optimal. Table 1 also shows that CDE 
own the best GD. Next, we choose the test problem 
ZDT6, which has a concave Pareto-optimal front. In 
Table 1 we find that the SP value for CDE is the best. 
At last, we choose a three dimensional test problem 
DTLZ-2, which has a spherical Pareto-optimal front. 
Table 1 also shows that CDE don’t have advantages 
neither in GD nor SP.  

In our algorithm, there is a trial operation that we 
add a specific mutation operator to DE for the purpose 
of accelerating the speed of the convergence. However,   
the experiments show that such operation don’t make 
sense in effect. 

7. Conclusion and future work 

In this paper, an improved differential evolution 
algorithm was proposed. We use a new archive 
mechanism that we compare the trial vector with its 
nearest vector, instead of the sign vector in previous 
DE. The diversity of obtained solutions is kept by the 
combination of the advantages of DE and the pruning 
mechanism used in the NSGA-II. The two operations 
above have indeed improved the effect of DE. And a 
mutation operator was integrated into the differential 
evolution for the expectation of speeding up the 
convergence, but this added operator hasn’t reached the 
ideal purpose. We test our approach on eight test 
problems, where it outperforms a number of the 
state-of-art approaches in the literature. But as we can 
see that CDE performs not well enough in three 
dimensional test problem. 

For future work, we intend to improve the 
performance of our approach in three dimensional test 
cases. Also, the parameters chosen in this paper were 
generated experimentally. It would be interesting to see 
the effect of these parameters on this problem. 
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Appendix I 

The pseudo-code of CDE is shown as follows: 
Input: [ ] ( ]max 4 0, 1 0, 1, , , , 0, 1, pp NN CR F q MUTD G +≥ ∈ ∈ = =  

initialize the boundary of the variables: ) ( )( ,i iupperlower x x  

For each individual 
0Gj P =∈  

 
, 0 ( ) [0,1] ( ( ) ( ))  ( 1, , )
j

i i i ii G Drand upper lower ilower x x xx + × −= = = "  

End for each 

evaluate the population in generation 0, set g to 1 
While 

maxg G<  

 Forall 
pNj ≤  

  randomly choose three integers ( )1, ,1 2 3, , PNr r r ∈ "  and 1 2 3j r r r≠ ≠ ≠  

    create a random integer ( )1, ,rand Di ∈ "  

 Forall i D≤  

           , ,

 

( )

            ( )

 

[ 0 , 1 )

3 1 2
1 1,

,

,  

1

1 o t h e r w i s e

i

r r r
i G g i G gi

j
i G g r a n d

j
i

F

C R

G g

G g

f r a n d i i

x x x

x

u
+ −×

< ∧

− −−

−

= =

=

=

=
=⎧

⎪⎪= ⎨
⎪
⎪⎩
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( ) [0 , 1) ( ( ) ( ))

          ( [0 , 1) )

 

,  

,  

  

otherwise

i i i

MUT
j

i G g
j

i G g

lower rand upper lower

if rand

x x x

u
u

+ × −

<

=

= =

⎧
⎪
⎨
⎪
⎩

 

if the trial vector 
 ,

j
i G gu = go beyond the boundary of the variable, we use the repair rule to repair this trial vector 

       End forall 

       choose the individual *
G gx = which is nearest to the trial vector ,  

j
i G gu =  

   

  

*

1

 i
j j

G g G gj f G g
G g

G g
j

o t h e r w i s e

u u

x

x
x +

= ==
=

=

⎧
⎪= ⎨
⎪⎩

≺
G G G

G
G

 

            if (
1

j j j j
G g G g G g G gux x x+ ∧ /= = === ≺
JG JG JG G ) 

   
,, 11 j Gp Gq q ux += + ∧ =

JG G，   

     End forall 

Merge these two populations into a new hybrid population. Then we truncate this over-bounded population. 

       g = g + 1 

End while 

Appendix II 
The value of performance metrics are shown in Table 1 as follows: 

Table 1. Performance comparisons of the three MOEAs for two objectives and three objectives tests. 
Problem Method 

 
GD SP 

Average Std.Dev Average Std.Dev 
 

SCH 
CDE 0.00027133 1.382E-005 0.0128527 0.0006038 

NSGA-II 0.00042570 1.654E-005 0.0331324 0.0068416 
SPEA2 0.00039107 1.934E-005 0.0139704 0.0010885 

 
FON 

CDE 0.00028117 1.653E-005 0.0031244 0.0002149 
NSGA-II 0.00016112 1.109E-005 0.0060988 0.0002661 
SPEA2 0.00022054 6.731E-006 0.0032458 0.0002112 

 
ZDT1 

CDE 0.00027125 1.587E-005 0.0025789 0.0001386 
NSGA-II 0.00018856 5.222E-005 0.0078044 0.0007836 
SPEA2 0.00026398 2.597W-005 0.0030282 0.0001807 

 
ZDT2 

CDE 0.00011040 3.856E-006 0.0029994 0.0001594 
NSGA-II 0.00010714 3.891E-005 0.0077056 0.0015039 
SPEA2 0.00010092 3.715E-006 0.0031558 0.0002961 

 
ZDT3 

CDE 0.00045941 2.612E-005 0.0031391 0.0017738 
NSGA-II 0.00058064 2.659E-005 0.0083976 0.0004040 
SPEA2 0.00081688 0.00026571 0.0051128 0.0013548 

 
ZDT4 

CDE 0.00027354 0.02176654 0.0063007 0.0002647 
NSGA-II 0.04408061 0.02876059 0.0113370 0.0003647 
SPEA2 0.07577120 0.05957841 0.0037116 0.0001929 

 
ZDT6 

CDE 0.00042144 1.687E-005 0.0057462 0.0021386 
NSGA-II 0.05306881 0.03495159 0.0063434 0.0021021 
SPEA2 0.00056205 7.473E-006 0.0018274 0.0001183 

 
DTLZ-2 

CDE 0.00027793 2.138E-005 0.0285187 0.0025607 
NSGA-II 0.00010799 3.456E-005 0.0573802 0.0046389 
SPEA2 5.064E-005 4.774E-005 0.0232716 0.0015607 
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