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Abstract—Stable matching-based selection models the selection
process in MOEA/D as a stable marriage problem. By finding
a stable matching between the subproblems and solutions, the
solutions are assigned to subproblems to balance the convergence
and the diversity. In this paper, a two-level stable matching-based
selection is proposed to further guarantee the diversity of the
population. More specifically, the first level of stable matching
only matches a solution to one of its most preferred subproblems
and the second level of stable matching is responsible for matching
the solutions to the remaining subproblems. Experimental studies
demonstrate that the proposed selection scheme is effective and
competitive comparing to other state-of-the-art selection schemes
for MOEA/D.

I. INTRODUCTION

A multiobjective optimization problem (MOP) can be for-

mulated as follows:

minimize F (x) = (f1(x), f2(x), ..., fm(x))T

subject to x ∈ Ω
(1)

where x = (x1, x2, ..., xn)
T is the decision variable, Ω ∈ Rn

is the search space and F : Rn → Rm is the objective vector

containing conflicting objectives to be optimized. Since an

MOP has multiple objectives to be optimized, no solution can

optimizes all the objectives at the same time. Pareto optimality

is used to define the optimal solutions of an MOP.

• Solution x1 is said to dominate solution x2 if and only

if fi(x
1) ≤ fi(x

2) for all i ∈ {1, 2, ...,m} and fj(x
1) <

fj(x
2) for at least one j ∈ {1, 2, ...,m}.

• A solution x∗ is said to be Pareto optimal if and only

if there is no other solution in the search space that

dominates it. The set of all Pareto optimal solutions is

called the Pareto optimal set (PS).

• The Pareto front (PF) is the set of corresponding objec-

tives vectors of all solutions in the PS.

Multiobjective evolutionary algorithms (MOEAs), which

are capable of finding a set of solutions to estimate the PF

of an MOP, have attracted much attention from researchers

on computational intelligence. Diversity and convergence are

two important factors affecting the performance of an MOEA.

During the evolutionary process, diversity is needed to escape

local optimum and maintain a set of diverse solutions, while

convergence is required to approach the PF. The selection

process is a key step to control the diversity and convergence

of an MOEA [1], [2]. According to the selection scheme,

MOEAs can be categorized into three groups. Pareto-based

MOEAs use the domination relation to select offspring so-

lutions, which contributes to the convergence. Diversity are

maintained according to density estimation such as crowding

distance used in NSGA-II [3] and clustering analysis in SPEA2

[4], respectively. Indicator-based MOEAs apply performance

indicators [5], e.g., hypervolume [6] which can measure the

convergence and diversity at the same time, to guide the

selection. Decomposition-based MOEAs decompose the MOP

into a number of single objective optimization problems and

optimize them simultaneously. As a representative of this sort,

MOEA based on decomposition (MOEA/D) [7] uses the elite-

based updating scheme and a set of evenly distributed weight

vectors to balance the convergence and the diversity.

In the original MOEA/D, it employs a steady-state evolution

model, where the update procedure takes place right after

the generation of an offspring. As discussed in [8], this

selection mechanism has some side effects on maintaining

diversity, especially when tackling problems with complicated

properties. In [8], Li. et al modeled the selection process in

MOEA/D as a matching process, and employ the classic stable

marriage model [9] to design the selection operator therein.

More specifically, it defines the subproblems and solutions as

two sets of agents with mutual preferences on convergence

and diversity respectively. Thereby, the stable matching be-

tween subproblems and solutions strikes the balance between

convergence and diversity of the selection process. However,

this method gives more emphasis on the convergence side.

Later, Li et al [10] further improve the preference definition

between subproblems and solutions by including the niche

count as a component and develop a straightforward but

more effective selection scheme based on the interrelationship

between subproblems and solutions. In this paper, we develop

a decomposition-based MOEA with two-level stable matching

based-selection (MOEA/D-STM2L) to further guarantee the

diversity. More specifically, in the first-level stable matching,
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we restrict the number of subproblems to which a solution is

allowed to be matched. Therefore, a solution can only be as-

signed to one of its most preferred subproblems. In the second-

level stable matching, the remaining unmatched subproblems

are assigned with appropriate solutions. The performance

of our proposed algorithm is validated on 17 unconstrained

benchmark problems, comparing with other three state-of-the-

art MOEA/D variants.

The remainder of this paper is organized as follows. Section

II introduces the background knowledge. Section III describes

two-level stable matching-based selection. The experimental

settings are listed in Section IV and corresponding results are

analyzed in Section V. Section VI concludes the paper.

II. BACKGROUND

A. MOEA/D framework

MOEA/D decomposes the MOP into a set of N subprob-

lems using a set of evenly distributed weight vectors in the

objective space. The optimal solution of each subproblem is a

Pareto optimal solution of the original MOP. There are several

decomposition approaches that can be used in MOEA/D, such

as the weighted sum (WS), Tchebycheff (TCH) and boundary

intersection (BI) approaches [11]. As discussed in [12], under

some mild condition, TCH approach has similar effects as

Pareto dominance in selection. In this case, this paper chooses

TCH approach for decomposition. The aggregation function of

the TCH approach is defined as

minimize g(x|λ, z∗) = max
1≤i≤m

{|fi(x)− z∗i |/λi}
subject to x ∈ Ω

(2)

where λ = (λ1, λ2, ..., λm)T is a weight vector with λi ≥ 0 for

all i ∈ {1, 2, ...,m} and
∑m

i=1 λi = 1. z∗ = (z∗1 , z
∗
2 , ..., z

∗
m)T,

where z∗i = minx∈Ω fi(x) for each i ∈ {1, 2, ...,m} is the

ideal objective vector. In particular, λi is set to be 10−6 when

λi = 0.

An important feature of MOEA/D is the use of neighboring

subproblems as parents to generate offspring solutions. A set

of neighboring subproblems are defined for each subproblem

based on the distance between their weight vectors. Since

neighboring subproblems have similar objective vectors, a

promising child solution is likely to be generated using in-

formation from its neighboring subproblems. Therefore, the

subproblems can be optimized in a collaborative manner.

MOEA/D-DRA [13] is an MOEA/D variant and adopts the

dynamic resource allocation. A utility function πj is defined

for each subproblem pj (j ∈ {1, 2, ..., N}) to estimate the

possible improvement of the aggregation function value of that

subproblem. The formula of πj is defined as

πj =

{
1 ifΔj > 0.001

(0.95 + 0.05× Δj

0.001 )× πj otherwise
(3)

where Δj is the relative decrease in the aggregation function

value of subproblem pj , which can be calculated as

Δj =
g(xold|λj , z∗)− g(xnew|λj , z∗)

g(xold|λj , z∗)
(4)

where xnew and xold are current and previous solutions of pj .

The MOEA/D framework with dynamic resource allocation

used in this paper is presented in Algorithm 1. More details

of the base algorithm can be found in [13].

Algorithm 1: MOEA/D-DRA framework

1 Generate N evenly spread weight vectors

{λ1, λ2, ..., λN};

2 Initialize population P ← {x1,x2, ...,xN} randomly in

the search space, evaluate their objective vectors and

randomly assign them to N subproblems;

3 for each subproblem pj with weight vector λj do
4 Find its T closest weight vectors excluding λj to

form set B(j);
5 πj ← 1;

6 end
7 Estimate z∗ = (z∗1 , z

∗
2 , ..., z

∗
m)T by z∗i ← minx∈P fi(x);

8 iteration ← 0;

9 while Stopping criterion is not satisfied do
10 Q ← ∅;

11 Select N/5 subproblems based on πj by using

10-tournament selection to form set I;

12 for each k ∈ I do
13 Uniformly randomly generate a number

rand ∈ (1, 0);
14 if rand < δ then
15 Randomly select two solutions xr1 and xr2

from B(k);
16 else
17 Randomly select two solutions xr1 and xr2

from the whole population P ;
18 end
19 Use DE operator to generate a new solution

xk,new = xk + F (xr1 − xr2);
20 Do polynomial mutation to xk,new and fix it if it

is out of the search space;

21 Q ← Q
⋃
xk,new;

22 end
23 Update z∗;

24 P ← P
⋃
Q;

25 iteration ← iteration+ 1;

26 if mod(iteration,30)=0 then
27 Update πj for all subproblems;

28 end
29 end

B. Stable matching-based selction

How to select promising offspring solutions is one of the

most important factors in MOEA/D. In original MOEA/D, the

selection process is simply based on the aggregation function

values. Once a new solution is generated, it is compared with

the current solution of the neighboring subproblems. If the new

solution is more promising, it will update at least one of them.

As this selection scheme focuses too much on selecting the
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elite solutions, it may lose the diversity for some MOPs with

complicated properties.

Stable marriage problem (SMP) is to find one-to-one stable

matching between a set of men and a set of women, where

each man has an ordered preference list of all women and vice

versa. In terms of matching pairs, it is obviously not desirable

if a man and a woman are matched to each other but both

of them prefer other partners. Such matching pair is called

an unstable pair. A stable matching solution is defined as a

matching solution that does not have any unstable pair [9].

Different from the original MOEA/D, the selection operator

proposed in [8] uses a generational evolution model, where the

selection of the next parents takes place after the generation of

a population of offspring. MOEA/D-STM [8] treats the sub-

problems and solutions as two sets of agents, and defines their

mutual preferences by considering convergence and diversity

respectively. Thereafter, the selection process is modeled as

a matching process between subproblems and solutions. The

stable matching between subproblems and solutions achieves

an equilibrium between their mutual preferences, thus striking

the balance between convergence and diversity of the selection

process. More specifically, the preferences between subprob-

lems and solutions are formulated as follows:

• In order to guarantee the convergence of the algorithm,

a subproblem prefers solutions with lower aggregation

function values. The preference value of subproblem p on

solutions x is defined as the aggregation function value

of x on p:

ΔP (p,x) = g(x|λ, z∗) (5)

where λ is the weight vector of p.

• On the other hand, a solution prefers subproblems that

are closer to its objective vector. In such a way, each

subproblem is matched to a solution closer to its weight

vector in the objective space, resulting in a good diversity

of the solutions. The preference value of x on p is defined

as:

ΔP (x, p) = F (x)− λTF (x)

λTλ
λ (6)

where F (x) = F (x) − z∗ is the relative objective

vector of x. In [8], F (x) is defined as the normalized

objective vector of x. But the objective vector used in

the aggregation function is not normalized. It is more

reasonable to keep it coincident.

Given the preferences from both sides, the preference lists

are calculated for each subproblem and each solution by

sorting the preference values in ascending order. Since the

number of solutions is larger than the number of subproblems,

some solutions will not be matched to any subproblem. The

stable matching solution is described as a matching solution

where

• if a solution x is matched to a subproblem but not p, then

x prefers its current partner to p and p prefers it current

partner to x;

• if a solution x is not matched to any subproblem, no

subproblem prefers x to its current partner.

Algorithm 2 presents the pseudo-code for finding the stable

matching between subproblems and solutions [8].

Algorithm 2: Stable matching

1 Include all the subproblems into unmatched set P;

2 Include all the solutions into unmatched set S;

3 while P �= ∅ do
4 Select a subproblem from P, denoted as p, and

propose a matching request to the first solution x on

p’s preference list, to which p has not yet proposed;

5 if x ∈ S then
6 Match x to p;

7 Set P ← P \ p and S ← S \ x;

8 else
9 if x prefers p to its current partner p′ then

10 Match x to p;

11 Set P ← P ∪ p′ \ p;

12 end
13 end
14 end
15 Output the matching solution.

III. TWO-LEVEL STABLE MATCHING-BASED SELECTION

The stable matching-based selection finds a stable matching

between subproblems and solutions by striking a balance

between their preferences. Nevertheless, the balance between

the preferences of subproblems and solutions does not mean a

real balance between convergence and diversity. The definition

of the preferences presented in Section II requires that more

importance should be attached to match the solution to a

subproblem that ranks higher in its preference list. Therefore,

the stable matching-based selection reaches a balance closer

to the side of convergence.

A straightforward way to overcome the lack of diversity is

to restrict the number of preferred subproblems that a solution

is allowed to be matched to. In other words, the preference list

of a solution is reduced to a smaller size r, so that only its r

most preferred subproblems remain. Then, this SMP is referred

as an SMP with incomplete lists [14]. The modified stable

matching algorithm is described in Algorithm 3. Notice that

the only difference compared to Algorithm 2 is the condition

of the while-loop. If the subproblem is still being unmatched

after it has proposed matching requests to all solutions on its

list, it means that the subproblem will not end up with any

stable matching solution and it will be left being unmatched.

Therefore, the problem left by the stable matching with

incomplete lists is that not all subproblems will be assigned

a solution. The two-level stable matching-based selection is

proposed to solve this problem. In the selection process, two

levels of stable matching are conducted to select solutions.

In the first-level stable matching, in order to strengthen the

diversity of the solutions, the stable matching algorithm with

solutions’ incomplete preference lists is firstly applied to match
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Algorithm 3: Stable matching with incomplete lists

1 Include all the subproblems into unmatched set P;

2 Include all the solutions into unmatched set S;

3 while P �= ∅ do
4 Select a subproblem from P, denoted as p, and

propose a matching request to the first solution x on

p’s preference list, to which p has not yet proposed;

5 if p is on the preference list of x then
6 if x ∈ S then
7 Match x to p;

8 Set P ← P \ p and S ← S \ x;

9 else
10 if x prefers p to its current partner p′ then
11 Match x to p;

12 Set P ← P ∪ p′ \ p;

13 end
14 end
15 end
16 if x is the last solution on the preference list of p

and p ∈ P then
17 P ← P \ p;

18 end
19 end
20 Output the matching solution.

the solutions to its closest subproblems. After the first-level sta-

ble matching, the subproblems remaining not matched are most

likely to be far away from any solution. Thus, the main purpose

of the second-level stable matching is to select a solution for

the remaining subproblems. Whether the solution matched to

a subproblem is closer to it or not is not as important as in the

first-level stable matching. Therefore, in the second-level stable

matching, the stable matching algorithm with full preference

lists are applied to find a stable matching between all remaining

subproblems and solutions. The algorithmic structure of the

two-level stable matching-based selection is demonstrated in

Algorithm 4.

IV. EXPERIMENTAL SETTINGS

The two-level stable matching-based selection presented in

Section III is integrated into the MOEA/D-DRA framework

presented in Section II to form the new algorithm MOEA/D-

STM2L. In order to evaluate the performance of MOEA/D-

STM2L, it is compared with its base algorithm MOEA/D-

DRA, its predecessor MOEA/D-STM and MOEA/D-IR [10]

with the inter-relationship based selection. All algorithms

are implemented in MATLAB. This section introduces the

experimental settings for the experimental studies.

A. Test instances

17 benchmark unconstrained test MOPs are chosen for

experimental studies. They are UF1-UF10 from CEC2009

MOEA competition [15] and MOP1-MOP7 [16]. The number

of the decision variables for the UF test instances is set to be

30. For MOP1-MOP7, it is set to be 10.

Algorithm 4: Two-level stable matching-based selection

1 Calculate the preference values of all subproblems and

solutions;

First-level of stable matching:
2 Generate the full preference lists of all subproblems and

solutions by sorting their preference values in ascending

order;

3 Reduce the size of the solutions’ preference lists by

keeping the first r elements;

4 Find a stable matching between the subproblems and

solutions by Algorithm 3;

Second-level of stable matching:
5 Generate the full preference lists of all the remaining

subproblems and solutions by sorting their preference

values in ascending order;

6 Find a stable matching between the remaining

subproblems and solutions by Algorithm 2;

7 Output the combined matching solution.

B. Performance Metric

The Inverted Generational Distance (IGD) metric [17] is

used to comprehensively investigate the performance of the

proposed algorithm. It is defined as the average distance of

a set of points uniformly sampled on the PF to their nearest

objective vectors of the solution set found by the MOEA. It is

formulated as:

IGD(P, P ∗) =
∑

x∈P∗ dist(x, P )

|P ∗| (7)

where dist(x, P ) is the Euclidian distance of the objective

vector to its nearest neighbor. IGD metric is a commonly used

indication of the convergence and diversity of the solutions.

The lower is the IGD value, the better is the approximation of

the whole PF. The uniformly sampled objective vectors on the

PF are provided from the inventors of these test instances. In

addition, Wilcoxon’s rank sum test at a 5% significance level

is conducted between the metric values of MOEA/D-STM2L

and its comparing MOEAs.

C. General Parameter Settings

Since the four variants of MOEA/D share most of the

parameters in common, their parameters settings in this ex-

perimental studies are tried to be kept in consistent. Details of

the same parameters settings are summarized as follows:

• N is set to be 600 for UF1-UF7, 1, 000 for UF8-UF10,

100 for MOP1-MOP5 and 300 for MOP6 and MOP7.

• For the DE operator, CR = 1 and F = 0.5. For the

polynomial mutation, the mutation probability is set as

1/n and its distribution index μ = 20 [18].

• δ is set to be 0.5.

• The maximal number of function evaluations is set to be

300, 000 for all test instances. Each algorithm is run 20
times on each test instance.

The settings of other parameters are listed below:
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• The neighborhood size T = 20 for MOEA/D-STM,

MOEAD-STM2L and MOEA/D-IR according to [8].

MOEA/D-DRA uses the settings suggested by its original

authors in [13], i.e. T = 0.1×N .

• For MOEA/D-STM2L, r is set to be 8 for UF test

instances and 4 for MOP test instances.

• For MOEA/D-IR, the number of related subproblems for a

solution is set to be 2 and the number of related solutions

for a subproblem is set to be 8.

V. EXPERIMENTAL STUDIES

A. Performance Comparisons with other MOEAs

The mean and standard variance of the IGD results of

MOEA/D-STM2L together with three comparing MOEAs are

shown in Table I.

In terms of the UF test instances, the mean IGD value

of MOEA/D-STM2L is better for most of the test instances

comparing to each of the other variants of MOEA/D, includ-

ing its predecessor MOEA/D-STM. Especially for UF6 and

UF9, the performance of MOEA/D-STM2L is significantly

better than MOEA/D-DRA and MOEA/D-IR. Even for test

instances where MOEA/D-STM2L does not perform the best,

its difference to the best mean value is negligible. The effective

performance of MOEA/D-STM2L is mainly because of the

farer balance between the convergence and diversity of the

population. The only exception is UF10, where the stable

matching-based selection is not effective anymore compared

to MOEA/D-DRA and MOEA/D-IR. The reason might be that

the trade-off between convergence and diversity is closer to

the side of diversity for the stable matching-based selection.

Therefore, when optimizing UF10, MOEA/D-STM2L and

MOEA/D-STM tend to get stuck in some local Pareto optimal

solutions to maintain the diversity of the population.

For the MOP test instances, the advantage of MOEA/D-

STM2L on diversity is much clearer. MOEA/D-STM2L out-

performs MOEA/D-DRA and MOEA/D-STM to a large extent

on all MOP test instances. MOEA/D-IR has slightly better

results only for 2 test instances.

B. Impact of Parameter Settings

The MOEA/D-STM2L introduces a new parameter r to

the stable matching based-selection. It controls to what degree

the first stable matching limits the preferred subproblems by

solutions. In order to study the impact of r on the effectiveness

of the two-level stable matching-based selection, MOEA/D-

STM2L is run for all test instances using different r settings.

The mean IGD metric values of 20 independent runs are shown

in Fig. 1(a)-Fig. 1(c).

The UF test instance set is a set of complicated MOPs

with diverse features. Fig. 1(a) and Fig. 1(b) shows that UF1-

UF3 and UF10 have limited suitable region of r. Either too

high or too low has a bad influence on the performance

of the MOEA/D-STM2L. For other UF test instances, the

performance MOEA/D-STM2L is less dependent on the setting

of r. But it is certainly not desirable if the setting of r is too

low, resulting in a lack of convergence. Nonetheless, when the

TABLE I: IGD Results Of MOEA/D-STM2L And Three

Comparing MOEAs On 17 Test Instances

Instance MOEA/D-
STM2L

MOEA/D-
DRA

MOEA/D-
STM

MOEA/D-
IR

UF1 1.009E-03 1.632E-03† 1.058E-03† 1.021E-03

5.98E-05 1.72E-04 5.62E-05 7.87E-05

UF2 2.569E-03 3.730E-03† 3.031E-03 2.763E-03

5.55E-04 1.31E-03 1.19E-03 1.42E-03

UF3 4.688E-03 7.443E-03 5.176E-03 3.310E-02†

3.86E-03 8.24E-03 4.17E-03 2.41E-02

UF4 5.267E-02 5.708E-02† 5.097E-02 5.221E-02

2.98E-03 3.22E-03 3.46E-03 3.50E-03

UF5 2.548E-01 3.163E-01 2.490E-01 2.532E-01

2.34E-02 1.11E-01 1.62E-02 2.27E-02

UF6 6.399E-02 2.866E-01† 7.055E-02 1.237E-01†

2.15E-02 2.52E-01 3.41E-02 5.83E-02

UF7 1.146E-03 1.797E-03† 1.169E-03 1.082E-03‡

7.99E-05 2.94E-04 5.91E-05 1.80E-04
UF8 3.611E-02 3.576E-02 3.959E-02 3.151E-02‡

6.72E-03 9.99E-03 1.12E-02 4.78E-03
UF9 2.506E-02 1.005E-01† 2.513E-02 4.125E-02†

1.55E-03 5.39E-02 1.27E-03 3.26E-02

UF10 1.430E+00 4.403E-01‡ 1.715E+00† 6.010E-01‡

2.38E-01 7.63E-02 2.52E-01 7.92E-02

MOP1 2.322E-02 3.445E-01† 3.367E-01† 2.197E-02‡

1.74E-03 3.85E-02 5.40E-02 1.83E-03
MOP2 2.868E-02 2.816E-01† 2.496E-01† 3.822E-02†

4.42E-02 6.64E-02 6.30E-02 7.85E-02

MOP3 4.263E-02 4.842E-01† 4.850E-01† 4.529E-02

9.48E-02 2.85E-02 3.17E-02 8.31E-02

MOP4 4.914E-02 3.118E-01† 2.911E-01† 4.987E-02

7.28E-02 1.95E-02 3.13E-02 7.60E-02

MOP5 1.999E-02 3.145E-01† 3.122E-01† 1.994E-02
1.92E-03 9.44E-03 1.23E-02 1.28E-03

MOP6 5.299E-02 3.045E-01† 2.989E-01† 5.384E-02‡

1.17E-03 2.28E-08 1.57E-02 3.41E-03

MOP7 7.259E-02 3.484E-01† 3.512E-01† 7.592E-02†

2.63E-03 1.19E-02 1.30E-07 3.02E-03

The best mean value for each test instance is highlighted in boldface. Wilcoxons rank sum test at 5% significance level is

conducted between MOEA/D-STM2L and its comparing MOEAs. † and ‡ indicates that MOEA/D-STM2L is significantly

better or worse than the corresponding MOEA, respectively.

r is too high, the two-level of stable matching is then reduced

to one-level. Taken all UF test instances into account, r is set

to be 8 for UF test instances.

In terms of the MOP test instances, the effects of the two-

level stable matching-based selection is more significant. In

order to find a set of evenly distributed solutions to estimate the

whole PF of the MOP test instances, more importance should

be attached to guarantee the diversity of the solutions. Fig.

1(c) indicates that when the r goes too high, the performance

of MOEA/D-STM2L drops dramatically. Therefore, r is set to

be a smaller value for MOP1-MOP7, i.e. r = 4.

VI. CONCLUSION

In this paper, the two-level stable matching-based selection

scheme is proposed for MOEA/D. The stable matching-based
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Fig. 1: Parameter sensitivity studies of parameter r.

selection models the selection of solutions to subproblems

as a matching process by defining the preferences between

them. It regards a stable matching between subproblems and

solutions as a balance between convergence and diversity. In

the two-level stable matching-based selection, the first-level

stable matching further moves the balance towards the side of

diversity by restricting the number of preferred subproblems

of a solution. Then, a second-level stable matching matches

the remaining unmatched subproblems and solutions. Exper-

imental studies show that the proposed MOEA/D-STM2L

outperforms other state-of-the-art variants of MOEA/D on

most of the test instances and provides comparable results to

the best one in other cases.

The two-level stable matching-based selection achieves a

significant improvement to the original stable matching-based

selection. In future, we would like to further investigate the

inability of stable matching-based selection on some test

instances. Furthermore, reproduction operator is also important

in MOEA design. It is interesting to investigate our newly

developed reproduction operators, e.g., adaptive operator se-

lection [19]–[21], local search [22] and manifold learning

[23] in MOEA/DSTM2L.
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