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Abstract 

In the real-world applications, many multi-objective 
optimization involve a large number of objective, 
however, existing evolutionary multi-objective 
optimization algorithms are applied only to a few 
number of objective. Because of inconvenience in 
handling large number of objective, researchers start to 
deal with how to reduce the redundant objectives. In 
this paper, we firstly introduce some existing 
algorithms on transforming high-dimensional to 
low-dimensional, and then propose a new algorithm, 
namely large dimensionality reduction based on the 
least square method. This method fits every objective 
function to a line, and compares the slope differences 
between each two lines, finally makes certain which 
one is redundancy and further reduces this one. This 
experiment shows, on one hand, there are some 
redundant objective functions in certain large 
dimensionality multi-objective optimization problems, 
and the objective space of non-redundant objective 
function is accordant with the low-dimensional true 
Pareto front. On other hand, the experiment result with 
other similar algorithm shows our algorithm is 
competitive and the efficacy of the procedure is 
demonstrated.  

1. INTRODUCTION 
Nowadays, Multi-objective Evolutionary Algorithm 

(MOEA) has shown an acceptable performance in 
many real-world problems with their origins in 
engineering, scientific and industrial areas [1]. 
However, most of the publications consider problems 
with two or three objectives, further, it is debatable, if it 
is worth utilizing MOEA methods to solve a large 
number of conflicting objectives ( such as 10 or more 
objectives ) for finding a representative set of 
Pareto-optimal solutions, for various practical reasons. 
First, visualization of a large dimensional front is 
certainly difficult. Second, an exponentially large 
number of solutions would be necessary to represent a 
large dimensional front, thereby making the solution 
procedures computationally expensive. Generally 
speaking, the more objectives are, the higher 
computationally time. Third, it would certainly be 
tedious for the decision makers to analyze so many 

solutions, to finally be able to choose a particular 
region, for picking up solution. These are some of the 
reasons why MOEA applications have also been 
confined to a limited number of objectives.  

Currently, there are mainly two approaches to deal 
with many objectives: (1) to propose relaxed forms of 
Pareto optimality [2]; (2) to reduce the number of 
objectives of the problem to ease the decision making 
or the search processes [3, 4, 5, 6, 7, 8, 9]. 

In this paper, we propose an algorithm to reduce the 
number of objectives of a given problems by 
identifying the non-conflicting objectives. The 
algorithm is based on least square method, where every 
objective is fitted to a line, then gets the slope, and 
reduce the redundant objectives. A comparative study 
shows that the algorithm achieves competitive results 
with respect to three algorithms algorithm recently 
proposed [3, 6, 9]. Besides, the proposed algorithm has 
good candidates to incorporate into a multi-objective 
optimization algorithm for reducing the non-conflicting 
objectives. 

The remainder of this paper is organized as follows. 
Section 2 presents three algorithms similar to our 
approach. In section 3 we describe in detail our 
algorithm. The validation of these algorithms is 
presented in Section 4. Finally, in Section 5 we draw 
some conclusions about the proposed algorithms, as 
well as some possible paths for future research.    

2. RELATED WORK 
Deb and Saxena [3, 4, 5] propose a method for 

reducing the number of objectives based on principal 
component analysis. The main assumption is that if two 
objectives are negatively correlated, these objectives 
are in conflict with each other. The authors analyze the 
eigenvectors of the correlation matrix in turn. To 
aggregate more objectives to the set of essential 
objective, the remainder of the eigenvectors is analyzed 
until the cumulative contribution of the eigenvalues 
exceeds a threshold cut (TC).  
  Brockhoff and Zitzler [6, 7, 8] define two kinds of 
objective reduction problem and two corresponding 
algorithms to solve them. If the dominance relation 
among the vectors doesn’t change when an objective is 
discarded, then that objective is not considered as 
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redundant. We can find this subset which discard some 
objective, and replace the original objective set. 

Jaimes and Coello [9] bring another method to 
reduce the objective using feature selection technique. 
The central part of the algorithm divided into three 
steps: first divide the objective set into homogeneous 
neighborhoods around each objective with the size q; 
then select the most compact neighborhood; finally 
maintain the certain of the most compact and discard 
its q neighbors. As Brockhoff and Zitzler’s, they also 
divide the process into two parts.   

3. PROPOSED OBJECTIVE REDUCTION 
ALGORITHM 

In this paper, we propose a method to identify the 
most non-conflicting objective in order to reduce the 
number of objectives of an optimization problem, 
where we don’t divide the process of objective 
reduction into two separate algorithms as literature [6, 
7, 8, 9]. For the two kinds of objectives reduction 
problems, using other strategy in this paper, we obtain 
the needful results. The central part of the method is 
line fitting distribution trends of every objective by 
least square method, then analyze the relation between 
the each two objective slopes, and decide which 
objective is redundant.  

Here, we introduce some symbol. The initial data set 
is represented in the form of a matrix 

T
1 2 MY=(Y ,Y ,...Y )  where iY is the i-th objective, 

and it is also the vector, the size is the number of 
individuals in the population. M is objective dimension. 
We consider iK  as i-th objective slope and it is 

obtained as j j j j
j 1 j 1 j 1

i
2 2

j j
j 1 j 1

n
K
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n n
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 where n is the 

population size and x  is the same vector, namely 

( 1 2, ,...1n n ), and y  is also vector, and it is the 

value of the i-th objective. 
Before using least square method, there are some 

pretreatments. 
(1) The given data must be in the standardized form, 
which means that the center of the whole data set is 
zero. This can be achieved by subtracting the mean and 
dividing standard deviation for each iY . After 

standardizing, the component of iY  become 

concentration; Furthermore, if iY and jY  is 

complete-linear relation, for example i jY Yk b= + . 

After this process, we get the same slope, and 
obviously, the objective iY and jY  are redundant, and 
their slope difference is always 0.    
(2) Sort all of the components of iY . For example, 

there are two vectors, iY (1,2,..., M)=  and 

jY (M,M 1,...1)= − . The sorting operator will 

change the vector iY  into '
iY (M,M-1,...1)= , and 

their slopes values will be consistent.  
  Hereto, we can use the least square method to get 
every objective slope without any scruple. The 
followed is how to determine the redundant objective. 
(3) The objective corresponding to the minimum 
mean is redundant. Figure 1 shows 4 objective and 
their slopes. First, we calculate respectively each 
objective difference values with others. For all of the 
objectives, we get the value as Table 1. 

Figure 1:  4 objective and their slopes 
Find the minimum value from Table 1, and it is 

0.125 between F2 and F3. We determine preliminarily 
the redundant objective is one of the two objectives F2 
and F3. But which objective can be reduced? 

For objective F2, we can calculate the average value: 
1.9 0.125 0.5

3 =0.842+ + ; the same as above, for F3: 
2.205 0.125 0.625

3 =0.985+ + . We decide the objective with 
minimum mean is redundancy, in this example, 
0.985>0.842, so F2 is redundant objective. 

Table 1: 4 objective and the valves of |Fi – Fj| 
Fi        
Fj F1 F2 F3 F4 

F1 0 1.9 2.025 1.4 
F2 1.9 0 0.125 0.5 
F3 2.025 0.125 0 0.625 
F4 1.4 0.5 0.625 0 

(4) Reduce only one objective after these operation 
processes. That is to say, if we consider F2 is 
redundancy, omit the objective and then we will 
initialize the new population with the objectives, F1, F3 
and F4 (F2 is not included), and reduce other objectives 
with the same analysis until all remainder objectives 
are necessary. Using this strategy, we need not divide 
the algorithm into two parts as the paper [6, 7, 8, 9]. 
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We will get the essential objectives set from M to 
' 'M (M 2)≥ and their data.   

(5) Redundant degreeσ . As the paper [6, 7, 8], our 
method have similar threshold cutσ . In Table 1, if we 
use σ (σ >0.125), we will think all of the objectives 
are necessary. In other words, if objective Fi and Fj are 
redundant, the different value must be less thanσ , 
namely| slope(Fi)-slope(Fj)|<σ .  

We now ready to present the overall the Least Square 
Method–NSGAII [12] procedure.  

Step1: Set an iteration counter t=0 andσ ; and initial 
set of objectives Rt = {1, 1, … 1}. 

Step2: Initialize a random population for all 
objectives in the set Rt , run an MOEA (NSGAII), and 
obtain a population Pt. 

  Step3: perform a Least Square Method analysis on Pt 
using Rt to yield a new reduced objectives Rt+1. Steps 
of the method are as follows: 

1. Perform the process (1)-(5), which introduced 
above, and obtain the redundant objective index 
i, or i is null. 

2. if i is not null then Rt[i]=0. 
Step4: If Rt = Rt+1 stop and declare the obtained front. 

Else set t=t+1 and go to Step 2. 
Thus starting with all M objectives, the above 

procedure iteratively finds a reduced set of objectives, 
by analyzing the obtained non-dominated solutions by 
an MOEA procedure. Furthermore, after analyzing 
procedure, only one objective may be reduced. Then 
we reinitialize non-redundant objectives set with 
all [ ] 1tR i = , where tR is the vector, and if [ ] 1tR i = , 
the i-th objective is not considered redundant, 
otherwise it is redundant .When no further objective 
reduction is possible, the procedure stops and declares 
the final set of objectives from M to 'M ( 'M <M) and 
corresponding non-dominated solution.   

4. COMPARISON STUDY 
   To evaluate the effectiveness of the proposed 
algorithm (my algorithm, MINE), we compare its 
results against these obtained by the greedy algorithm 
proposed by Brockhoff and Zitzler to solve the 
σ -MOSS (with σ  is alterable, BZ algorithm) and 
Jaimes and Coello’s Feature Selection Technique 
algorithm (algorithm 2, JC algorithm). In this 
experiment, we employed a variation of the 
well-known DTLZ5, and DTLZ7 problems defined in 
[10]. In NSGAII, all parameters as following: 
generation is 400, population size is 200, and crossover 
probability and mutation probability are 0.9 and 0.1 
respectively. 

To evaluation the convergence the obtained Pareto 

front by using an objective subset we used the inverted 
generational distance (IGD), which is a variation of a 

metric proposed in [9]. It is defined by IGD= 2
i

1

d   n
n

i=

, 

where n=|PFtrue| and di is the Euclidian distance 
between each vector of PFtrue and the nearest member 
of PFknown. In addition, this metric measures the spread 
of PFknown onto PFtrue. That is, a non-dominated optimal 
set, will be penalize in the value of this metric even 
though its vectors belong to PFtrue. Lower values are 
preferred for this metric [13].  
  Table 2 shows the results for the DTLZ5 (3, M)[11] 
problem with variable objectives, that is to say, we will 
get 3 most necessary objectives from the total 
objectives set, M.   Moreover, we regulate the 
σ (σ is about 2.6) in BZ algorithm so that the number 
of the non-redundant objective is also 3.  

Table2: IGD values with M objective for DTLZ5 
 BZ JC MINE 

M Best Avg Best Avg  Best Avg 
5 0.359 0.401 0.379 0.421 0.355 0.401 

10 0.216 0.341 0.448 0.619 0.204 0.287 
15 0.343 0.367 0.400 0.431 0.411 0.500 
20 0.358 0.431 0.313 0.437 0.324 0.519 
25 0.455 0.577 0.383 0.588 0375 0.548 
30 0.444 0.521 0.466 0.527 0.377 0.486 

In the DTLZ5 instance using 6 different objective 
numbers, the our algorithm has a best performance in 
Best IGD value aspects, in 4 of the 6 cases, and also in 
Avg value, in 4 of 6 cases. The other two algorithms 
are all square. From the Figure 2, the BZ algorithm is 
worse than others. Because our algorithm reduces only 
one redundant objective each time, it will run (M-3) 
times for the DTLZ5 (3, M) problems and running time 
is not in the ascendant. 

Figure 2: Running times of three algorithms for DTLZ5 
Table 3 will shows the essential objectives identified 

in some case, and we will compare directly the reduced 
set of objectives. 

Table3: Essential objectives 

Problem 
Reduced set of objective 

JC and BZ  MINE 
DTLZ5(2,5) 1,5 4,5 
DTLZ5(3,5) 1,2,5 3,4,5 

DTLZ5(2,10) 1,10 9,10 
DTLZ5(3,10) 1,9,10 8,9,10 

  The following is another experiment, DTLZ7. We 
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compare with the result as DTLZ5 problem, and the 
parameter σ  is about 0.95 in BZ algorithm. 

JC algorithm has the best performance (IGD value) 
in the DTLZ7 problem, in 3 of 6 cases. However, our 
proposed method has the similar results with the BZ 
algorithm, 2 of 6 and 1 of 6 respectively; they have 
similar IGD value and the essential objective set.  

Table 4: IGD values with M objective for DTLZ7 
 BZ JC MINE 

M Best Avg Best Avg  Best Avg 
5 0.344 0.44 0.322 0.552 0.369 0.49 

10 14.8 15.7 15.9 16.0 14.2 15.5 
15 40.2 42.7 41.5 42.6 41.8 42.7 
20 52.9 54.3 22.2 48.2 51.9 54.8 
25 68.2 71.1 30.2 42.8 69.7 71.6 
30 80.3 82.5 42.1 63.4 35.6 60.4 

 In the file of running time, the JC algorithm is the 
best, then our way, the last BZ algorithm. We can 
distinguish the result from the Figure 3 easily. 

Figure 3: Running times of three algorithms for DTLZ7 
 There is disputed case. As to the objective functions 

themselves, some problems have non-redundant 
objectives [11], for example DTLZ2 and JC algorithm 
do not consider about this exception. After reducing the 
“redundant” objectives, some essential objectives 
centralize at a very small value. In fact, it is 
unreasonable. However, our proposed algorithm has a 
control mechanism for preserving the necessary 
objectives (such as in section 3-(5) σ =0.0005) as well 
as the BZ algorithm. In other words, before reducing 
objectives, the method judges whether there are 
redundant objectives in the original objective set or the 
new subset. If yes, start or go on reducing the 
unnecessary objective. Else stop and output the 
corresponding results. 

Anther problem is that the difference between the 
Avg IGD value and Best IGD value is obvious gap. It 
shows that the essential objective sets are not unique. 
Maybe the objective space randomness influences the 
algorithms. In the three algorithms, BZ algorithm is the 
best to obtain the steady subset, and then our algorithm, 
the last is JC algorithm. 

Speculative to say that IGD measure is not the best 
one for objective reduction. The performance measures 
yielded completely contradictory result, for example, 
with the increase of the original objective number, the 
measure valve should be grown bit by bit, however, in 
some case, IGD decrease.  

5. CONCLUSIONS AND FUTURE WORK 
This paper presented the algorithm to identify the 

most redundant objective of a problems so that we can 
obtain a reduced set objectives that make search and 
the decision making process easier. The algorithm uses 
the least square method to fit every objective into a line 
(in fact we only pay attention to the slope of the line). 
Then we choose two redundant objectives which 
correspond to the minimum value in all of the 
difference between every two slopes. Finally, we 
consider the one is redundancy, whose mean of the 
slopes is less than other’s. Also we use a parameter to 
judge whether there are redundant objectives.  

The results show that the proposed algorithm is very 
competitive respect to other three similar algorithms 
recently proposed. Anther advantage of the proposed 
algorithm is low complexity, although JC algorithm is 
the best, and our algorithm is better than BZ method. 

Additionally, we proposed the use of the inverted 
generational distance for measure the quality of the 
obtained reduced set of objectives. The three 
algorithms are equally matched.  

We also introduce a new strategy not to divide the 
objective reduction problem into two kinds of 
algorithm, and we can choose the essential objectives 
set we need. Hopefully, this study will encourage more 
such, for devising more reliable and efficient methods 
of dimensionality reduction and eventually facilitate 
solution to large dimensional multi objective 
optimization problem.  

 From the experimental result using the difference 
between Best and Avg in the IGD result table, we find 
all of the three algorithms are unstable. We know JC 
algorithm is the most unstable, then our algorithm, the 
last is the BZ algorithm. How to obtain the stable 
subset will be a part of our further work.   

Furthermore, how to measure the objective reduction 
algorithms and have a better application in the real 
world would be interesting to study, and they are focus 
in the following work. 
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