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Abstract: Existing studies on dynamic multi-objective optimization focus on problems with time-
dependent objective functions, while the ones with a changing number of objectives have rarely been
considered in the literature. Instead of changing the shape or position of the Pareto-optimal front/set
when having time-dependent objective functions, increasing or decreasing the number of objectives
usually leads to the expansion or contraction of the dimension of the Pareto-optimal front/set man-
ifold. Unfortunately, most existing dynamic handling techniques can hardly be adapted to this type
of dynamics. In this paper, we report our attempt toward tackling the dynamic multi-objective op-
timization problems with a changing number of objectives. We implement a dynamic two-archive
evolutionary algorithm which maintains two co-evolving populations simultaneously. In particular,
these two populations are complementary to each other: one concerns more about the convergence
while the other concerns more about the diversity. The compositions of these two populations are
adaptively reconstructed once the environment changes. In addition, these two populations interact
with each other via a mating selection mechanism. Comprehensive experiments are conducted on
various benchmark problems with a time-dependent number of objectives. Empirical results fully
demonstrate the effectiveness of our proposed algorithm.

Keywords: Multi-objective optimization, dynamic optimization, evolutionary algorithms, changing
objectives, decomposition-based method.

1 Introduction

Dynamic multi-objective optimization (DMO) is more challenging than the stationary scenarios, as
it needs to deal with the trade-offs and the time-dependent objective functions or constraints simul-
taneously. An effective method for solving the DMO problems (DMOPs) needs to overcome certain
difficulties raised by the dynamics, such as tracking the time-dependent Pareto-optimal front (PF) or
Pareto-optimal set (PS), and providing diversified solutions that enable a timely adaptation to the
changing environment. Due to its inherent adaptation property [1], evolutionary algorithm (EA) has
been recognized as a powerful tool for DMO. According to the ways of handling dynamics, the existing
techniques can be classified into the following three categories [2].

• Diversity enhancement : As the name suggests, its basic idea is to propel an already converged
population jump out of the current optimum by increasing the population diversity. This is
usually implemented by either responding to the dynamics merely after detecting a change of
the environment or maintaining the population diversity throughout the whole optimization
process. The prior one is known as diversity introduction and is usually accompanied by a
change detection technique. For example, [3–5] developed some hyper-mutation methods by
which the solutions are expected to jump out of their current positions and thus to adapt to the
changed environment. In [3, 6] and [7], some additional solutions, either generated in a random
manner or by some heuristics, are injected into the current population to participate the survival
competition. On the other hand, the latter one, called diversity maintenance, usually does not
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explicitly respond to the changing environment [8, 9] whereas it mainly relies on its intrinsic
diversity maintenance strategy to adapt to the dynamics. In [10], a multi-population strategy is
developed to enhance the population diversity in a competitive and cooperative manner.

• Memory mechanism: The major purpose of this sort of method is to utilize the historical in-
formation to accelerate the convergence progress. For example, [11] suggested a hybrid memory
scheme that re-initializes a new population either by re-evaluating the previous non-dominated
solutions or by using a local search upon the elite solutions preserved in the archive. [12] ex-
ploited the historical knowledge and used it to build up an evolutionary environment model.
Accordingly, this model is used to guide the adaptation to the changing environment.

• Prediction strategy : This sort of method is usually coupled with a memory mechanism to re-
initialize the population according to the anticipated optimal information. For example, [13]
and [14] employed an autoregressive model, built upon the historical information, to seed a
new population within the neighborhood of the anticipated position of the new Pareto-optimal
set (PS). By utilizing the regularity property [15], [16–18] developed various models to capture
the movement of the PS manifolds’ centers under different dynamic environments. Instead of
anticipating the position of the new PS when the environment changes, [19] and [20] suggested
to predict the optimal moving direction of the population. More recently, [21] proposed a hybrid
scheme, which uses the Kalman Filter or random re-initialization, alternatively, according to
their online performance, to respond to the changing environment.

It is worth noting that the current studies on DMO mainly focus on problems with time-dependent
objective functions, which result in the change of the PF or PS over time. In addition to this type of
dynamic, many real-life scenarios consider problems in which the number of objective functions may
also change over time. For example, a software development life cycle usually contains four phases [22],
i.e., inception, elaboration, construction and transition. Each phase involves various tasks, some of
which might be different from the other phases. In other words, different phases consider various
number of objectives. In order to manage changes (changing requirements, technology, resources,
products and so on), the software development process needs to switch among different phases back
and forth, and thus changing the number of objectives. In project scheduling, we usually want to
minimize the makespan and total salary cost simultaneously. However, given a tighter deadline must
be met, the salary cost may not be important and would not be considered as an objective any
longer under the new circumstance [23–25]. In some other examples, if an application is running on a
system with a wired power supply, there is no need to consider the energy consumption [26]. However,
once the system is detached from the wired power supply and only relies on batteries, minimizing
the energy consumption thus becomes a new objective. Furthermore, in a heterogeneous multi-core
system, power consumption, performance, temperature, master frequency and reliability are usually
considered altogether when designing a runtime scheduler [27–29]. However, these objectives can
be ignored or re-considered according to some external instances, e.g., the power plugins, excessive
temperature. Similar situations happen in the cloud computing resource scheduling, where even more
varieties of objectives will be considered, e.g., load balance, quality of service [30–32].

The study on how to handle the DMOP with a changing number of objectives is rather limited,
although this concept was mentioned in the literature [33,34] and [8]. To the best of our knowledge, [33]
is the only one that discussed the effects of the objective increment and replacement. It proposed an
inheritance strategy that re-evaluates the objective functions of the current non-dominated solutions to
adapt to this type of dynamics. Generally speaking, the DMOP with a changing number of objectives
has two major characteristics: 1) the PF or PS of the original problem is a subset of the one after
increasing the number of objectives, and vice versa; and 2) instead of changing the position or the
shape of the original PF or PS, increasing or decreasing the number of objectives usually results
in the expansion and contraction of the dimension of the PF or PS manifold. Bearing these two
characteristics in mind, this paper presents a dynamic two-archive EA to handle the DMOP with
a changing number of objectives. More specifically, our proposed method simultaneously maintains
two co-evolving populations, which have complementary effects on the search process. In particular,
one population, denoted as the convergence archive (CA), mainly focuses on providing a competitive
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selection pressure towards the PF; while the other one, called the diversity archive (DA), maintains
a set of solutions with a promising diversity. Furthermore, the compositions of the CA and the DA
are adaptively reconstructed when the environment changes. In addition, the interaction between
these two populations are implemented by a restricted mating selection mechanism, where the mating
parents are selected from the CA and the DA, respectively, according to the population distribution.
Note that the multi-population strategy is not a brand new technique in the evolutionary multi-
objective optimization (EMO) literature. For example, [35] and [36], the ancestors of this paper,
used two complementary populations to balance the convergence and diversity during the search
process. [37] developed a dual-population paradigm to take advantages of the strengths of the Pareto-
and decomposition-based techniques. Nevertheless, none of them have taken the dynamic environment
into consideration.

In the remainder of this paper, we will at first provide some preliminaries of this paper in Sec-
tion 2. Then, the technical details of our proposed algorithm are described step by step in Section 3.
Comprehensive experiments are conducted and analyzed in Section 5. At last, Section 6 concludes
this paper and provides some future directions.

2 Preliminaries

In this section, we first provide some definitions useful for this paper. Then, we describe the challenges
posed by the DMOPs with a changing number of objectives. Finally, we discuss the pitfalls of the
current dynamic handling techniques.

2.1 Basic Definitions

There are various types of dynamic characteristics that can result in different mathematical definitions.
This paper focuses on the continuous DMOPs defined as follows:

minimize F(x, t) = (f1(x, t), · · · , fm(t)(x, t))
T

subject to x ∈ Ω, t ∈ Ωt
(1)

where t is a discrete time defined as t = b ττt c, τ and τt represent the iteration counter and the frequency
of change, respectively, and Ωt ⊆ N is the time space. Ω =

∏n
i=1[ai, bi] ⊆ Rn is the decision (variable)

space, x = (x1, · · · , xn)T ∈ Ω is a candidate solution. F : Ω → Rm(t) constitutes of m(t) real-valued
objective functions and Rm(t) is the objective space at time step t, where m(t) is a discrete function
of t.

Definition 1. At time step t, x1 is said to Pareto dominate x2, denoted as x1 �t x2, if and only if:
∀i ∈ {1, · · · ,m(t)}, fi(x1, t) ≤ fi(x2, t); and ∃j ∈ {1, · · · ,m(t)}, fj(x1, t) < fj(x

2, t).

Definition 2. At time step t, x∗ ∈ Ω is said to be Pareto-optimal, if there is no other x ∈ Ω such
that x �t x∗.

Definition 3. At time step t, the set of all Pareto-optimal solutions is called the t-th Pareto-optimal
set (PSt). The corresponding set of Pareto-optimal objective vectors is called the t-th Pareto-optimal
front (PFt), i.e., PFt = {F(x, t)|x ∈ PSt}.

Theorem 1. When increasing the number of objectives, the PF and the PS at time step t are a subset
of those at time step t+ 1; on the contrary, when decreasing the number of objectives, the PF and the
PS at time step t are a superset of those at time step t+ 1.

Theorem 1 supports the first characteristic given in Section 1, and its proof can be found in Sec-
tion 7.

Definition 4. At time step t, the t-th ideal objective vector is z∗(t) = (z∗1(t), · · · , z∗m(t)(t))
T , where

z∗i (t) = min
x∈Ω

fi(x, t), i ∈ {1, · · · ,m(t)}.
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Definition 5. At time step t, the t-th nadir objective vector is znad(t) = (znad1 (t), · · · , znadm(t)(t))
T ,

where znadi (t) = max
x∈Ω

fi(x, t), i ∈ {1, · · · ,m(t)}.

Definition 6. Under some mild conditions, the regularity property, induced from the Karush-Kuhn-
Tucker condition, means that the PF and PS of a continuous m-objective MOP is an (m − 1)-
dimensional piecewise continuous manifold in both the objective space and the decision space.

Note that an efficient EMO algorithm may employ this regularity property explicitly (e.g., [38–40])
or implicitly (e.g., [41–43]) in its implementation. This paper considers continuous DMOPs with the
regularity property, according to which the PFt and PSt of the DMOP at time step t is a (m(t)− 1)-
dimensional piecewise continuous manifold in both Rm(t) and Ω. In addition, according to 6, we can
easily derive the second characteristic given in Section 1.

2.2 Challenges of DMOP with a Changing Number of Objectives

Rather than shifting the position or adjusting the geometric shape of the PF or PS [44], changing
the number of objectives usually results in the expansion or contraction of the dimensionality of
the PF or PS manifold. In order to understand the challenges posed by changing the number of
objectives, this subsection uses DTLZ2 [45] as the benchmark problem and multi-objective EA based
on decomposition (MOEA/D) [46] as the baseline algorithm for investigations. Note that the DTLZ
problems are scalable to any number of objectives and MOEA/D has been reported to show good
performance on a wide range of problems [46–48]. To have a better visual comparison, we only discuss
the challenges in the two- and three-objective scenarios while the challenges will become more severe
with the growth of dimensionality.

2.2.1 When Increasing the Number of Objectives

First, we run MOEA/D on a two-objective DTLZ2 instance for 200 generations1 and obtain a well
approximation to the PF as shown in Fig. 1(a). Then, we change the underlying problem to a three-
objective instance. Fig. 1(b) shows the corresponding population distribution after re-evaluating the
objective values. From this subfigure, we can see that although the population still converges well
to the PF, the diversity is not satisfied any longer after increasing the number of objectives (as
shown in Fig. 1(b), the population crowds on a curve). Generally speaking, the most direct effect
of increasing the number of objectives is the expansion of the PF or PS manifold. In particular, the
population convergence might not be influenced after increasing the number of objectives; whereas the
population diversity becomes severely insufficient to approximate the expanded PF or PS manifold.
These characteristics pose significant challenges to the timely adaptation to the changing environment,
i.e., how to propel the population jump out of the crowded areas.
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Figure 1: Comparison of population distributions when increasing the number of objectives on DTLZ2.

1Here the differential evolution (DE) [49] is used as the reproduction operator, where CR = 0.5 and F = 0.5. The
population size is set to 100, and the other parameters are set the same as suggested in [46].
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2.2.2 When Decreasing the Number of Objectives

Here, we run MOEA/D on a three-objective DTLZ2 instance for 300 generations2 and obtain a
reasonably good approximation to the PF as shown in Fig. 2(a). Then, we change the underlying
problem to a two-objective instance. Fig. 2(b) shows the corresponding population distribution after
re-evaluating the objective values. In contrast to the scenario discussed in Section 2.2.1, the most
direct effect of decreasing the number of objectives is the contraction of the PF or PS manifold. In
addition, different from increasing the number of objectives, some solutions still stay on the PF after
the objective reduction; while the others are moved away from the PF. Furthermore, although the
spread of the population is not affected by decreasing an objective, the population diversity is not
satisfied any longer (as shown in Fig. 2(b), there are many duplicate or similar solutions in the reduced
objective space). These characteristics make the algorithm design difficult on both pulling the drifted
solutions back to the PF and propelling the solutions jump out from their duplicates.
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Figure 2: Comparison of population distributions when decreasing the number of objectives on DTLZ2.

2.3 Weaknesses of Existing Dynamic Handling Techniques

As discussed in Section 1, the existing dynamic handling techniques do not take the changing number
of objectives into consideration. They have the following weaknesses when encountering this sort of
dynamics.

• As introduced in Section 1, the diversity enhancement techniques use some randomly or heuris-
tically injected candidates to adapt to the changing environment. However, when increasing the
number of objectives, the injected candidates can hardly compete with the original population
whose convergence has not be influenced. On the other hand, when decreasing the number of
objectives, although the injected candidates are able to enhance the population diversity to a
certain extent, they can hardly provide any selection pressure towards the PF.

• The memory mechanism has been used in [33] to handle the DMOP with a changing number
of objectives. In particular, they suggested an inheritance strategy that simply re-evaluates the
objective values of the original population whenever the change of the environment is detected.
Obviously, this strategy is too simple to handle problems with complicated properties.

• The prediction strategy, which takes advantages of the historical information, seems to be an
antidote for dynamic optimization. But unfortunately, the existing prediction strategies are
usually proposed to anticipate the movement of the PS when the environment changes. However,
as discussed in Section 2.2, the change of the number of objectives usually leads to the expansion
or contraction of the PS manifold, rather than the movement of its position. Thus, the prediction,
based on the historical manifold model, can be heavily erroneous.

2All parameters are set the same as those in Section 2.2.1, except for the population size which is set to 105.
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3 Proposed Algorithm

In this section, we develop a dynamic two-archive EA (denoted as DTAEA), whose high-level flow
chart is shown in Fig. 3, for solving the DMOP with a changing number of objectives. Similar to its
ancestors [50,51] and [36], DTAEA maintains two co-evolving populations simultaneously: one, called
the convergence archive (CA), is used to provide a constantly competitive selection pressure towards
the optima; the other, called the diversity archive (DA), is used to provide diversified solutions as
much as possible. It is worth noting that the size of the CA and the DA is equal and fixed to a
constant N a priori. In each iteration, if a change of the environment is not occurred, mating parents
are separately selected from the CA and the DA for offspring reproduction according to the mechanism
described in Section 3.3. Afterwards, the offspring is used to update the CA and the DA according to
the mechanisms described in Section 3.2. On the other hand, the CA and the DA are reconstructed
according to the mechanism described in Section 3.1 whenever the underlying environment changes.
At the end, all solutions of the CA are used to form the final population.
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Figure 3: Flow chart of DTAEA.

3.1 Reconstruction Mechanisms

This step is the main crux to respond to the changing environment. Generally speaking, its basic idea
is to reconstruct the CA and the DA whenever the environment changes. Since the challenges posed
by increasing and decreasing the number of objectives are different, as discussed in Section 2.2, the
reconstruction mechanisms are different accordingly.

3.1.1 When Increasing the Number of Objectives

As discussed in Section 2.2.1, the convergence of the population is not affected when increasing the
number of objectives; while the population diversity becomes severely inadequate to approximate the
expanded PF or PS manifold. To avoid sacrificing any selection pressure towards the optima, we
use all optimal solutions in the last CA before increasing the number of objectives to form the new
CA. In the meanwhile, all members of the DA are replaced by the randomly generated solutions. In
particular, to provide as much diversified solutions as possible, here we employ the canonical Latin
hypercube sampling (LHS) method [52] to uniformly sample N random solutions from the decision
space. The pseudo-code of this reconstruction mechanism is given in Algorithm 1.

Algorithm 1: Reconstruction Mechanism After Increasing the Number of Objectives

Input: The last CA before decreasing the number of objectives P
Output: CA, DA

1 CA← P;
2 Use the LHS to sample N random solutions to form the DA;
3 return CA and DA

6



3.1.2 When Decreasing the Number of Objectives

As discussed in Section 2.2.2, the convergence of some, if not all, population members might be
impaired when decreasing the number of objectives; while the population diversity is also adversely
affected due the existence of many similar or duplicate solutions in the reduced objective space. To
keep the selection pressure towards the optima as much as possible, all non-dominated solutions in the
last CA before decreasing the number of objectives are used to form the new CA. If the new CA is not
full, we perform the polynomial mutation [53] on some selected competitive non-dominated solutions
to generate some mutants to fill the gap in the new CA. In particular, the non-dominated solutions
used for mutation are chosen by a binary tournament selection, where the non-dominated solution
located in a less crowded area is preferred. Note that the density estimation method will be discussed
in detail in Section 3.2.1. Since decreasing the number of objectives does not affect the spread of the
population, instead of reconstructing the DA from scratch, we at first use all the dominated solutions
in the last CA before decreasing the number of objectives to form the new DA. To provide enough
diversified information to help the solutions jump out from their duplicates, we use the canonical LHS
method to generate N − |DA| random solutions to fill the gap in the new DA. The pseudo-code of
this reconstruction mechanism is given in Algorithm 2.

Algorithm 2: Reconstruction Mechanism After Decreasing the Number of Objectives

Input: The last CA before decreasing the number of objectives P
Output: CA, DA

1 CA← NonDominationSelection(P); // choose all non-dominated solutions

2 DA← P \ CA;
3 while |CA| < N do
4 xc ← BirnaryTournamentSelection(CA);
5 xm ← PolynomialMutation(xc);
6 CA← CA

⋃{xm};
7 Use the LHS to sample N − |DA| random solutions to fill the DA;
8 return CA and DA

Algorithm 3: Binary Tournament Selection

Input: Solution set S
Output: Selected solution xc

1 Randomly select two solutions x1 and x2 from S;
2 if Density(x1) < Density(x2) then
3 xc ← x1;
4 else if Density(x1) > Density(x2) then
5 xc ← x2;
6 else
7 xc ← Randomly pick one between x1 and x2;

8 return xc

3.2 Update Mechanisms

As described at the outset of this section, the CA and the DA have complementary effects on the search
process. Accordingly, their update mechanisms are different and will be described in Section 3.2.2
and Section 3.2.3, separately. Before that, Section 3.2.1 will at first introduces the density estimation
method used in the update mechanisms.
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3.2.1 Density Estimation Method

To facilitate the density estimation, we at first specify N(t) uniformly distributed weight vectors, i.e.,
W(t) = {w1(t), · · · ,wN(t)(t)}, in Rm(t). In particular, we employ the weight vector generation method
developed in [54] for this purpose, since it is scalable to the many-objective scenarios. Note that the
number of weight vectors at time step t might not be equal to the size of the CA and the DA, i.e.,
N(t) ≤ N . In this case, a weight vector might be associated with more than one solution if N(t) <
N . Accordingly, these weight vectors divide Rm(t) into N(t) subspaces, i.e., ∆1(t), · · · ,∆N(t)(t). In
particular, a subspace ∆i(t), where i ∈ {1, · · · , N(t)} is defined as:

∆i(t) = {F(x, t) ∈ Rm(t)|〈F(x, t),wi(t)〉 ≤ 〈F(x, t),wj(t)〉} (2)

where j ∈ {1, · · · , N(t)} and 〈F(x, t),w(t)〉 is the perpendicular distance between F(x, t) and the
reference line formed by the origin and w(t). After the setup of subspaces, each solution of the under-
lying population is associated with an unique subspace according to its position in Rm(t). Specifically,
for a solution x, the index of its associated subspace is determined as:

k = argmin
i∈{1,··· ,N(t)}

〈F(x, t),wi(t)〉 (3)

where F(x, t) is the normalized objective vector of x, and its i-th objective function is calculated as:

f i(x, t) =
fi(x, t)− z∗i (t)

znadi (t)− z∗i (t)
(4)

where i ∈ {1, · · · ,m(t)}. Based on the association relationship between solutions and subspaces, the
density of a subspace is evaluated as the number of its associated solutions. Fig. 4 gives a simple
example to illustrate this density estimation method. In particular, five weight vectors divide the
underlying objective space into five subspaces, where the corresponding density of each subspace is 2,
3, 1, 1 and 3, respectively.

3.2.2 Update Mechanism of the CA

The effect of the CA is to provide a constantly competitive selection pressure towards the optima.
To achieve this, we at first combine the CA and the offspring population into a mixed population
R. Afterwards, we employ the fast non-dominated sorting method developed in [55] to divide R into
several non-domination levels, i.e., F1, F2 and so on. Then, starting from F1, each non-domination
level is selected one at a time to construct the new CA. This procedure continues until the size of the
new CA equals to or for the first time exceeds its predefined threshold. Let us denote the last included
non-domination level as Fl, while all solutions from Fl+1 onwards are not taken into consideration any
longer. If the size of the new CA equals its predefined threshold, this update procedure terminates.
Otherwise, we use the density estimation method introduced in Section 3.2.1 to evaluate the density
information of the current CA. Then, we eliminate one worst solution from the most crowded subspace
at a time until the CA is trimmed to its predefined threshold. In particular, for a subspace ∆i(t), the
worst solution xw is defined as:

xw = argmax
x∈∆i(t)

{gtch(x|wi(t), z∗(t))} (5)

where
gtch(x|wi(t), z∗(t)) = max

1≤j≤m(t)
{|fj(x, t)− z∗j (t)|/wij(t)}. (6)

The pseudo-code of the update mechanism of the CA is given in Algorithm 4. Fig. 4 gives an example
to illustrate this update mechanism. Assume that the black and green circles indicate the solutions of
the original CA and the offspring population respectively. Since the first non-domination level already
contains 8 solutions, x3 and x7, which belong to the second non-domination level, are not considered
any longer. In the first iteration, the worst solution x8 in the most crowded subspace, i.e., ∆5(t), is
eliminated. Analogously, x2 and x9 will be eliminated in the latter iterations.
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Figure 4: An example of the CA’s update mechanism. Note that xi is denoted as its index i for short.

Algorithm 4: Update Mechanism of the CA

Input: CA, offspring population Q, weight vector set W
Output: Updated CA

1 S← ∅, i← 1;
2 R← CA

⋃
Q;

3 {F1, F2, · · · } ← NonDominatedSorting(R);
4 while |S| ≤ N do
5 S← S

⋃
Fi, i← i+ 1;

6 if |S| = N then
7 CA← S;
8 else
9 foreach x ∈ S do

10 Fk(x, t) = F(x,t)−z∗(t)
znad(t)−z∗(t) ;

11 {∆1(t), · · · ,∆|W|(t)} ← Association(S,W);
12 while |S| > N do
13 Find the most crowded subspace ∆i(t);

14 xw ← argmax
x∈∆i(t)

{gtch(x|wi(t), z∗(t))};

15 S← S \ {xw};
16 CA← S;

17 return CA
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Algorithm 5: Association Operation

Input: Solution set S, weight vector set W
Output: Subspaces ∆1(t), · · · ,∆|W|(t)

1 foreach x ∈ S do
2 foreach w ∈W do
3 Compute d⊥(x,w) = x−wTx/‖w‖;
4 k ← argmin

w∈W
d⊥(x,w);

5 ∆k(t)← ∆k(t)
⋃{x};

6 return ∆1(t), · · · ,∆|W|(t)

3.2.3 Update Mechanism of the DA

Comparing to the CA, the DA has a complementary effect which aims at providing diversified solutions
as much as possible, especially in the areas under exploited by the CA. Similar to the update mechanism
of the CA, we at first combine the DA and the offspring population into a mixed population R; in
the meanwhile, we also take the up to date CA as the reference set. Afterwards, we employ the
density estimation method introduced in Section 3.2.1 to build up the association relationship between
solutions in R and the subspaces. Then, based on the association relationship, we iteratively investigate
each subspace for which we try to keep itr (1 ≤ itr ≤ N) solutions at the itr-th iteration. In particular,
at the itr-th iteration, if the CA already has itr solutions or there is no solution in R associated with
the currently investigating subspace, we stop considering this subspace during this iteration and move
to the next subspace directly. Otherwise, the best non-dominated solution in R associated with this
currently investigating subspace is chosen to be included into the newly formed DA. In particular, the
best solution xb of the currently investigating subspace ∆c(t) is defined as:

xb = argmin
x∈O

{gtch(x|wc(t), z∗(t))} (7)

where O constitutes of the non-dominated solutions in R associated with ∆c(t). This iterative inves-
tigation continues until the DA is filled to its predefined threshold. The pseudo-code of the update
mechanism of the DA is given in Algorithm 6. Fig. 5 gives an example to illustrate this update
mechanism. Assume that the gray triangles represent the solutions of the up to date CA while the
black and green circles indicate the solutions of the original DA and the offspring population. At the
first iteration, the update mechanism of the DA starts from ∆1(t). Since the CA already has two
solutions in this subspace, we move to investigate ∆2(t). As the CA does not has any solution in this
subspace, the best non-dominated solution in this subspace, i.e., x3 is included into the newly formed
DA. Thereafter, since ∆3(t) to ∆5(t) already have a solution in the CA, they are not considered during
this iteration. At the second iteration, since the CA already has two solutions in ∆1(t), it is still not
considered during this iteration. As for ∆2(t), since the CA does not has any solution in this subspace,
the remaining best solution x5 is selected this time. Then, since ∆3(t) to ∆5(t) only have one solution
in the CA, we can choose the best solution from R to be included into the newly formed DA this time.
At the end of the second iteration, the DA is filled and the update procedure terminates.

3.3 Offspring Reproduction

The interaction between two co-evolving populations is a vital step in the DTAEA. To take advantage
of the complementary effects between the CA and the DA, here the interaction is implemented as a
restricted mating selection mechanism that chooses the mating parents from these two co-evolving
populations respectively according to the population distribution. It is worth noting that, comparing
to the CA, the DA plays as an auxiliary which provides diversified information as much as possible
and propels the adaptation to the changing environments. In addition, the CA and the DA become
gradually asymptotic with the progress of the evolution. This results in a weakened complementary
effects between these two co-evolving populations. Bearing these considerations in mind, the pseudo
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Figure 5: An example of the DA’s update mechanism. Note that xi is denoted as its index i for short.

code of the restricted mating selection mechanism is given in Algorithm 7. More specifically, the first
mating parent is randomly chosen from the CA. If the diversity of the CA is not promising, the second
mating parent is randomly chosen from the DA; otherwise, it still comes from the CA. In particular,
the diversity of the CA is measured by the occupation rate (denoted as IoCA) which is the percentage
of the subspaces having associated solutions. It is intuitive to understand that a high IoCA indicates
a well diversified distribution in the CA. Accordingly, we should give a larger chance to select the
second mating parent from the CA. Based on the selected mating parents, the offspring solution can
be generated by the appropriate crossover and mutation operations as desired. In particular, we use
the classic simulated binary crossover [56] and the polynomial mutation in this paper.

3.4 Time Complexity Analysis

This subsection discusses the complexity of DTAEA in one generation. The CA and the DA will
be reconstructed once the environment changes, i.e., when the number of objectives is increased or
decreased. In the former case, i.e., when increasing the number of objectives, the reconstruction of the
CA does not incur any further computation while the reconstruction of the DA costs O(N) function
evaluations. As for the latter case, i.e., when decreasing the number of objectives, the identification of
the non-dominated solutions costs O(N2) comparisons. Then, filling the gap of the CA and the DA
may respectively take O(N) function evaluations. As for the update mechanism of the CA, the most
time consuming operations are the non-dominated sorting (line 3 of Algorithm 4) and the association
operation (line 11 of Algorithm 4). In particular, the prior one costs O(N2) comparisons while the
latter one takes O(N |W |), where |W | returns the cardinality of a W . As for the update mechanism
of the DA, the association operation in line 3 of Algorithm 6 costs O(N |W |) comparisons. During
the main while loop, the update procedure performs one by one for the subspaces. In particular, if
∆i(t) 6= ∅, where i ∈ {1, · · · , |W |}, the most time consuming part of the for loop from line 6 to line
11 is the non-dominated sorting in line 8 of Algorithm 6, which costs O(|∆i(t)|2) comparisons. Since∑|W |

i=1 ∆i(t) = 2N , this for loop costs O(N2) comparisons in total. In summary, the complexity of
DTAEA in one generation is O(N2).

3.5 Further Discussions

As DTAEA is developed upon the decomposition-based framework, this subsection discusses the
connections with some state-of-the-art decomposition-based EMO algorithms, MOEA/D-M2M [57],
NSGA-III [58], MOEA/D-GR [59] and MOEA/D-STM [60–62]. Similar to MOEA/D-M2M, DTAEA
uses the weight vectors to divide the objective space into several subspaces. However, the major pur-
pose of subspace division in MOEA/D-M2M is to enforce an equal distribution of the computational
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Algorithm 6: Update Mechanism of the DA

Input: CA, DA, offspring population Q, weight vector set W
Output: Updated DA

1 S← ∅, i← 1;
2 R← DA

⋃
Q;

3 {∆1(t), · · · ,∆|W|(t)} ← Association(R,W);
4 itr← 1;
5 while |S| ≤ N do
6 for i← 1 to |W| do
7 if ∆i(t) 6= ∅ ∧ CA has less than itr solutions in ∆i(t) then
8 O← NonDominationSelection(∆i(t));

9 xb ← argmin
x∈O

{gtch(x|wc(t), z∗(t))};

10 ∆i(t)← ∆i(t) \ {xb};
11 S← S

⋃{xb};
12 itr← itr + 1;

13 DA← S;
14 return DA

Algorithm 7: Restricted Mating Selection Mechanism

Input: CA, DA
Output: Mating parents p1, p2

1 p1 ← RandomSelection(CA);
2 if rnd < IoCA then
3 p2 ← RandomSelection(CA);
4 else
5 p2 ← RandomSelection(DA);

6 return p1, p2

resources to each subspace; while the subspace division is used to facilitate the density estimation in
DTAEA. Similar to NSGA-III, MOEA/D-GR and MOEA/D-STM, each weight vector in DTAEA is
associated with its related solutions to facilitate the environmental selection. It uses different strate-
gies to maintain its two co-evolving archives. In particular, according to the association relationship,
the CA trims solutions from the most crowded subspaces; while the DA gives higher survival rates to
solutions resided in the subspaces under exploited by the CA. In contrast, NSGA-III merely uses the
association relationship to guide the truncation through the most crowded subspaces. In MOEA/D-
GR and MOEA/D-STM, the next parent population is composed of the elite solutions from each of
the non-empty subspace, which has at least one associated solution.

4 Experimental Settings

This section introduces the benchmark problems, performance metrics and the state-of-the-art EMO
algorithms used in the experimental studies of this paper.

4.1 Benchmark Problems

Benchmark problems play important roles in assessing and analysing the performance of an algorithm,
and thus guiding its further developments. Although some dynamic multi-objective benchmark prob-
lems have been proposed in the literature, e.g., [44,63] and [64], most, if not all, of them merely consider
the dynamically changing shape or position of the PF or PS. In [34], a dynamic multi-objective test
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Table 1: Mathematical Definitions of Dynamic Multi-Objective Benchmark Problems

Problem Instance Definition Domain

F1

f1 = (1 + g)0.5
∏m(t)−1
i=1 xi

[0, 1]fj=2:m(t)−1 = (1 + g)0.5(
∏m(t)−j
i=1 xi)(1− xm(t)−j+1)

fm(t) = (1 + g)0.5(1− x1)
g = 100[n−m(t) + 1 +

∑n
i=m(t)((xi − 0.5)2 − cos(20π(xi − 0.5)))]

F2

f1 = (1 + g)0.5
∏m(t)−1
i=1 cos(xiπ/2)

[0, 1]fj=2:m(t)−1 = (1 + g)0.5(
∏m(t)−j
i=1 cos(xiπ/2))(sin(xm(t)−j+1π/2))

fm(t) = (1 + g) sin(x1π/2)
g =

∑n
i=m(t)(xi − 0.5)2

F3 as F2, except g is replaced by the one from F1 [0, 1]

F4 as F2, except xi is replaced by xαi , where i ∈ {1, · · · ,m(t)− 1}, α > 0 [0, 1]

F5
as F2, except g =

∑n
i=m(t)(xi −G(t̄))2

[0, 1]
where G(t̄) = | sin(0.5πt̄)|, t̄ = 1

nt̄
b τ
τt̄
c

F6
as F2, except g = G(t̄) +

∑n
i=m(t)(xi −G(t̄))2

[0, 1]where G(t̄) = | sin(0.5πt̄)|, t̄ = 1
nt̄
b τ
τt̄
c

and xi is replaced by x
F (t̄)
i , where i ∈ {1, · · · ,m(t)− 1} and F (t̄) = 1 + 100 sin4(0.5πt̄)

instance with a changing number of objectives was developed, for the first time, by modifying a par-
ticular test instance from the classic DTLZ benchmark suite [45]. In this paper, we develop a series
of dynamic multi-objective benchmark problems as shown in Table 1. Note that, in addition to the
changing number of objectives, F5 and F6 are also accompanied by a time-dependent change of the
shape or position of the PF or PS.

4.2 Performance Metrics

In the field of DMO, there is still no standard metric for quantitatively evaluating the performance
of algorithms. In this paper, we employ the following two metrics, adapted from two popular metrics
used in the literature, for the performance assessment.

• Mean Inverted Generational Distance (MIGD) [16]: Let P ∗t is a set of points uniformly sampled
along the PFt, St is the set of solutions obtained by an EMO algorithm for approximating the
PFt, and T is a set of discrete time steps in a run,

MIGD =
1

|T |
∑
t∈T

IGD(P ∗t , St). (8)

In particular, as defined in [65],

IGD(P ∗t , Pt) =

∑
x∈P dist(x, P

∗
t )

|S| , (9)

where dist(x, P ∗t ) is the Euclidean distance between a point x ∈ St and its nearest neighbor in
P ∗t . Note that the calculation of IGD requires the prior knowledge of the PF. In our experi-
ments, we use the method suggested in [54] to sample 10,000 uniformly distributed points on
the corresponding PFt at the t-th time step where t ∈ T .

• Mean Hypervolume (MHV): Let zwt = (zw1 , . . . , z
w
m(t))

T be a worst point in the objective space
that is dominated by all Pareto-optimal objective vectors at the t-th time step,

MHV =
1

|T |
∑
t∈T

HV(St). (10)
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In particular, as defined in [66], HV measures the size of the objective space dominated by
solutions in St and bounded by zwt .

HV(St) = VOL(
⋃
x∈St

[f1(x), zw1 ]× . . . [fm(t)(x), zwm(t)]) (11)

where VOL(·) indicates the Lebesgue measure. Note that solutions, dominated by the worst
point, are discarded for HV calculation. In our experiments, we set zwt = (2, · · · , 2︸ ︷︷ ︸

m(t)

)T . For a

better presentation, the HV values used in equation (10) are normalized to [0, 1] by dividing
zt =

∏m
i=1 z

w
i .

4.3 EMO Algorithms Used in the Experimental Studies

In our empirical studies, four state-of-the-art EMO algorithms are used for comparisons: the dynamic
version of the elitist non-dominated sorting genetic algorithm (DNSGA-II) [3] and MOEA/D with
Kalman Filter prediction (MOEA/D-KF) [21]; and their corresponding stationary baseline NSGA-
II [55] and MOEA/D [41]. They were chosen because of their popularity and good performance
in both dynamic and static environments. Comparisons with the baseline algorithms are important.
Because we want to check whether the dynamic algorithms outperform their static counterparts or not
when handling the DMOP with a changing number of objectives. The following paragraphs provide
some brief descriptions of these compared algorithms.

• DNSGA-II : To make the classic NSGA-II suitable for handling dynamic optimization problems,
[3] suggested to replace some population members with either randomly generated solutions or
mutated solutions upon existing ones once a change occurs. As reported in [3], the prior one
performs better on DMOPs with severely changing environments while the latter one may work
well on DMOPs with moderate changes. In our experiments, we adopt the prior DNSGA-II
version in view of its slightly better performance reported in [3].

• MOEA/D-KF : This is a recently proposed prediction-based strategy that employs a linear dis-
crete time Kalman Filter to model the movements of the PS in the dynamic environment. There-
after, this model is used to predict the new location of the PS when a change occurs. Empirical
results in [21] has shown that MOEA/D-KF is very competitive for the dynamic optimization
and it outperforms the other state-of-the-art predictive strategies, e.g., [16] and [19].

• NSGA-II : It at first uses non-dominated sorting to divide the population into several non-
domination levels. Solutions in the first several levels have a high priority to be selected as the
next parents. The exceeded solutions are trimmed according to the density information.

• MOEA/D : This is a representative of the decomposition-based EMO methods. Its basic idea is to
decompose the original MOP into several subproblems, either single-objective scalar functions
or simplified MOPs. Thereafter, it employs some population-based techniques to solve these
subproblems in a collaborative manner.

Each algorithm is independently run 31 times on each problem instance. 300 generations are given
to each algorithm before the first change. In other words, the first change occurs after the first 300
generations. To have a statistically sound conclusion, we use the Wilcoxon rank sum test at the 5%
significance level in the comparisons.

5 Experimental Results

5.1 Results on F1 to F4

Let us at first consider F1 to F4 in which only the number of objectives changes with time. In
particular, we define the time varying number of objectives m(t) as follows:
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m(t) =


3, t = 1

m(t− 1) + 1, t ∈ [2, 5]

m(t− 1)− 1, t ∈ [6, 10]

(12)

where t ∈ {1, · · · , 10} is a discrete time. The population size is constantly set as 300 while the number
of weight vectors is set according to Table 2. To investigate the performance of different algorithms
under various frequencies of change, we set τt as 25, 50, 100, 200, respectively. Table 3 and Table 4
give the median and the interquartile range (IQR) of the corresponding metric values obtained by
different algorithms under various circumstances. In particular, the best metric values are highlighted
in the bold face with a gray background. In addition to the metric values, we also keep a record of
the ranks of the IGD and HV values obtained by different algorithms at each time step. We assign
a global rank to each algorithm by averaging the ranks obtained at all time steps. The experimental
results clearly demonstrate that DTAEA is the best optimizer as it wins on all comparisons (64 out
of 64 for MIGD and 64 out of 64 for MHV), and it is always top ranked. In the following paragraphs,
we will explain these results in detail.

Table 2: Number of Weight Vectors

m # of weight vectors

2 300 (H = 299)

3 300 (H = 23)

4 286 (H = 10)

5 280 (H1 = 6, H2 = 4)

6 273 (H1 = 5, H2 = 2)

7 294 (H1 = 4, H2 = 3)

H is the number of divisions on each coordinate. Two-layer weight vector generation method is applied for 5- to
7-objective cases. H1 and H2 is the number of divisions for the boundary and inside layer, respectively.

F1 is developed from DTLZ1 [45] which has a multi-modal property to hinder an algorithm from
converging to the PFt, t ∈ {1, · · · , 10}. As shown in Table 3 and Table 4, the performance of DTAEA
is robust as it obtains the best MIGD and MHV values under all four frequencies of change. Fig. 6(a)
shows the trajectories of IGD values obtained by different algorithms across the whole evolution
process; while Fig. 7(a) shows the average ranks of IGD obtained by different algorithms at each time
step. From these two figures, we clearly see that DTAEA shows the best performance at every time
step. It is worth noting that the performance of DTAEA has some fluctuations when τt = 25. This
is because, under a high frequency of change, DTAEA can hardly drive the solutions fully converge
to the PFt before the environment changes. However, with the decrease of the frequency of change,
i.e., the increase of τt, the performance of DTAEA becomes stable. As for the other four algorithms,
the performance of different algorithms fluctuate a lot at different time steps. It is interesting to note
that the performance of the stationary algorithms, i.e., NSGA-II and MOEA/D, are comparable to
their dynamic counterparts, i.e., DNSGA-II and MOEA/D-KF. In particular, under a high frequency
of change, i.e, τt = 25, NSGA-II and MOEA/D have shown a better performance than DNSGA-II and
MOEA/D-KF at every time step. This implies that the dynamic handling techniques of DNSGA-II and
MOEA/D-KF might not be capable of handling the expansion or contraction of the objective space.
Even worse, these mechanisms can have an adverse effect to the population for adapting to the changing
environments. In addition, we also notice that NSGA-II and DNSGA-II show better performance than
MOEA/D and MOEA/D-KF at the first several time steps; whereas their performance degenerate
significantly afterwards. This is because NSGA-II can have a faster convergence than MOEA/D when
the number of objectives is relatively small. As discussed in Section 2.2, the increase of the number of
objectives does not influence the population convergence. Thus, the competitive IGD values obtained
at the 2- and 3-objective cases have an accumulative effect which makes NSGA-II and DNSGA-II
maintain a competitive performance at the first couple of time steps. However, the ineffectiveness of
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NSGA-II and DNSGA-II for handling problems with a large number of objectives [67] leads to their
poor performance at the latter time steps. Even worse, their poor performance at 6- and 7-objective
scenarios also disseminate a negative accumulation which results in their poor performance when
decreasing the number of objectives.

F2 is developed from DTLZ2 [45] which is a relatively simple benchmark problem. From Fig. 6(b)
and Fig. 7(b), we also find that DTAEA has shown the consistently best performance across all time
steps. It is interesting to note that the MIGD and MHV values obtained by all five algorithms lie in
the same scale. This is because F2 does not pose too much challenge to the algorithms for converging
to the PFt. Thus all algorithms are able to adapt their populations to the changing environments
within a reasonable number of function evaluations. Due to this reason, as shown in Fig. 6(b), the
IGD trajectories of NSGA-II and DNSGA-II surge up to a relatively high level when the number
of objectives becomes large; whereas their IGD trajectories gradually go down when decreasing the
number of objectives. Moreover, similar to the observations on F1, DNSGA-II and MOEA/D-KF do
not show superior performance than their corresponding stationary counterparts on F2.

F3 is developed from DTLZ3 [45] which has the same PFt, t ∈ {1, · · · , 10}, as F2 but has a multi-
modal property. Due to the multi-modal property, which hinders the population from approaching
the PFt, the IGD trajectories of NSGA-II and DNSGA-II can hardly drop down when decreasing
the number of objectives. In the meanwhile, we still notice that the dynamic handling techniques of
DNGSA-II and MOEA/D-KF do not help the population adapt to the changed environments. Even
worse, the injected solutions provide a false information about the newly changed PF or PS, which is
harmful to the evolution process.

F4 is developed from DTLZ4 [45] which also has the same PFt, t ∈ {1, · · · , 10}, as F2 but has
a parametric mapping that introduces a biased density of Pareto-optimal solutions towards some
particular coordinates. In this case, F4 not only poses significant challenges for handling the changing
number of objectives, but also requires that the algorithm can have a well balance between convergence
and diversity. The superior performance of DTAEA can be attributed to the dedicated operations
of two co-evolving populations for balancing convergence and diversity during the whole evolution
process. Similar to the observations on the previous problem instances, the stationary algorithms still
show competitive performance than their dynamic counterparts at most time steps.

5.2 Results on F5 and F6

Different from F1 to F4, F5 and F6 not only consider a changing number of objectives, but also have a
time varying PS. Here we use equation (12) to define the time varying number of objectives; as for the
parameters related to the time varying PS, we set its change frequency as τt̄ = 5 and change severity as
nt̄ = 10 (these settings are widely used in the literature, e.g., [10,68] and [69]). From the experimental
results shown in Table 3 and Table 4, we find that DTAEA has shown the best performance on almost
all comparisons (30 out of 32 for MIGD and 28 out of 32 for MHV). In the following paragraphs, we
will explain these results in detail.

F5 is developed from F2 and is with a time varying PS of which the position is changed with
time. Although the overall performance of DTAEA is the best as shown in Table 3 and Table 4, its
performance fluctuates significantly under a high frequency of change, i.e., τt = 25 and τt = 50, as
shown in Fig. 6(e) and Fig. 7(e). It is worth noting that DTAEA does not have any dynamic detection
or handling technique for the time varying PS. Thus, under a high frequency of change, DTAEA does
not make a good adaption to two kinds of dynamics. However, as discussed in Section 5.1, F2 does
not pose too much difficulty to the algorithm for converging to the PF. This explains the comparable
performance achieved by the other four algorithms under a high frequency of change. Nevertheless,
even without any specific dynamic handling technique for the time varying PS, the complementary
effects of two archives of DTAEA help the population adapt to the changing environments when
decreasing the frequency of change, i.e., increasing τt. Furthermore, NSGA-II and MOEA/D still show
comparable performance than their dynamic counterparts when encountering two kinds of dynamics.

F6 is also developed from F2 but it poses more challenges to the algorithm for approaching the
PF. Similar to the observations on F5, the performance of DTAEA fluctuate significantly under a
high frequency of change as shown in Fig. 6(f) and Fig. 7(f). However, since the g function of F6,
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which controls the difficulty for converging to the PF, is more difficult than that of F5, the superiority
of DTAEA is more observable than F5. In addition, although the dynamic handling technique of
DNSGA-II and MOEA/D-KF are designed for handling the time varying PS, they do not show better
performance than their stationary counterparts. We explain these observations as that the severity of
change of the time varying PS is smaller than the expansion or contraction of the PF or PS manifold
when changing the number of objectives. Thus, due to the ineffectiveness of the dynamic reaction
mechanisms of DNSGA-II and MOEA/D-KF for handling the changing number of objectives, it makes
their performance be not much indifferent from their dynamic counterparts.

Table 3: Performance Comparisons of DTAEA and the Other Algorithms on MIGD Metric

τt

NSGA-II DNSGA-II MOEA/D MOEA/D-KF DTAEA

MIGD R MIGD R MIGD R MIGD R MIGD R

F1

25 1.40E-2(9.25E-3)† 3.3 1.32E-2(6.51E-3)† 3.3 1.53E-3(2.18E-4)† 3.1 2.05E-2(1.81E-2)† 4.2 5.50E-4(1.99E-4) 1.1

50 3.36E-2(3.33E-2)† 3.7 3.38E-2(2.07E-2)† 3.8 8.53E-4(9.43E-4)† 2.9 5.22E-3(6.23E-3)† 3.5 3.88E-4(1.03E-5) 1

100 1.99E-2(5.68E-2)† 3.9 2.84E-2(6.27E-2)† 4.1 7.36E-4(4.29E-4)† 2.7 9.78E-4(6.03E-4)† 3.3 3.64E-4(2.49E-6) 1

200 1.71E-2(5.38E-2)† 4.3 7.83E-3(3.45E-2)† 4.1 6.47E-4(8.72E-4)† 2.6 6.75E-4(4.58E-4)† 3 3.55E-4(1.41E-6) 1

F2

25 1.92E-3(1.27E-4)† 3.2 2.02E-3(2.12E-4)† 3.6 2.19E-3(1.17E-4)† 3.3 2.26E-3(6.71E-5)† 3.8 1.26E-3(4.58E-6) 1.1

50 2.20E-3(9.07E-5)† 3.6 2.24E-3(1.47E-4)† 3.7 2.08E-3(5.81E-5)† 3.2 2.10E-3(6.03E-5)† 3.5 1.25E-3(3.26E-6) 1

100 2.45E-3(1.37E-4)† 3.8 2.47E-3(1.41E-4)† 3.9 2.01E-3(2.89E-5)† 3.1 1.99E-3(3.51E-5)† 3.1 1.22E-3(1.30E-6) 1

200 2.46E-3(1.61E-4)† 3.8 2.50E-3(1.48E-4)† 3.9 1.93E-3(4.26E-5)† 3.1 1.92E-3(3.41E-5)† 3.1 1.20E-3(2.20E-6) 1

F3

25 2.15E-2(1.78E-2)† 3.1 2.62E-2(1.82E-2)† 3.1 4.68E-3(1.25E-2)† 3.5 4.90E-2(6.92E-2)† 4.1 2.06E-3(1.34E-3) 1.1

50 9.09E-2(3.82E-2)† 3.7 8.88E-2(4.13E-2)† 3.9 2.96E-3(5.33E-4)† 2.9 1.02E-2(5.72E-3)† 3.4 1.39E-3(1.06E-4) 1.1

100 1.61E-1(1.08E-1)† 4 1.35E-1(1.22E-1)† 4 2.22E-3(1.31E-4)† 2.7 2.57E-3(9.73E-4)† 3.2 1.24E-3(9.04E-6) 1

200 1.82E-1(2.01E-1)† 4.2 1.91E-1(1.47E-1)† 4.2 2.09E-3(4.00E-3)† 2.6 2.16E-3(9.26E-4)† 2.9 1.22E-3(4.17E-6) 1

F4

25 3.06E-3(5.08E-4)† 2.7 3.66E-3(5.08E-4)† 3.4 4.19E-3(3.56E-4)† 4.1 4.02E-3(2.12E-4)† 3.8 1.32E-3(7.80E-5) 1.1

50 2.93E-3(3.78E-4)† 3.1 3.19E-3(3.71E-4)† 3.4 3.74E-3(2.07E-4)† 3.9 3.62E-3(3.94E-4)† 3.6 1.24E-3(4.05E-6) 1

100 3.19E-3(3.12E-4)† 3.4 3.16E-3(4.91E-4)† 3.4 3.38E-3(6.86E-4)† 3.6 3.15E-3(3.86E-4)† 3.6 1.22E-3(1.50E-6) 1

200 2.79E-3(1.82E-4)† 3.3 2.79E-3(3.63E-4)† 3.3 2.73E-3(4.51E-4)† 3.6 2.78E-3(5.72E-4)† 3.8 1.20E-3(1.35E-6) 1

F5

25 7.93E-3(3.37E-3)† 4.2 3.69E-3(2.93E-4)† 4 2.61E-3(2.62E-4) 2.6 2.56E-3(1.78E-4)‡ 2.5 2.61E-3(9.71E-5) 1.8

50 3.36E-3(2.45E-4)† 3.8 3.69E-3(2.36E-4)† 4.5 2.31E-3(1.25E-4)† 2.6 2.24E-3(1.08E-4)† 2.5 1.91E-3(6.69E-5) 1.7

100 2.02E-3(1.80E-4)† 3.2 2.24E-3(1.23E-4)† 4 2.13E-3(9.99E-5)† 3.5 1.99E-3(4.51E-5)† 2.9 1.45E-3(2.98E-5) 1.3

200 1.91E-3(1.06E-4)† 2.9 2.20E-3(1.23E-4)† 4.3 2.02E-3(7.70E-5)† 3.4 1.93E-3(4.98E-5)† 3.1 1.36E-3(6.77E-6) 1.2

F6

25 8.10E-3(1.09E-3)† 4.3 5.19E-3(7.90E-4)† 3.7 3.12E-3(3.53E-4)† 2.7 2.93E-3(1.86E-4) 2.5 2.98E-3(1.76E-4) 1.7

50 5.27E-3(5.91E-4)† 4.5 5.60E-3(4.67E-4)† 4.1 2.68E-3(7.39E-5)† 2.6 2.71E-3(1.72E-4)† 2.5 2.08E-3(5.08E-5) 1.3

100 3.56E-3(3.48E-4)† 4.2 3.29E-3(1.11E-4)† 4.2 2.36E-3(1.95E-4)† 2.8 2.32E-3(1.08E-4)† 2.8 1.56E-3(2.25E-5) 1.1

200 3.90E-3(3.72E-4)† 4.4 3.10E-3(1.46E-4)† 4 2.24E-3(9.08E-5)† 2.6 2.16E-3(1.06E-4)† 2.8 1.46E-3(2.09E-5) 1.2

R denotes the global rank assigned to each algorithm by averaging the ranks obtained at all time steps. Wilcoxon’s rank sum test at a 0.05

significance level is performed between DTAEA and each of NSGA-II, DNSGA-II, MOEA/D and MOEA/D-KF. † and ‡ denote the performance
of the corresponding algorithm is significantly worse than and better than that of DTAEA, respectively. The best median value is highlighted in
boldface with gray background.

5.3 Further Analysis

From the experimental studies in Section 5.1 and Section 5.2, it is clear to see the superiority of
our proposed DTAEA for handling the DMOPs with a dynamically changing number of objectives.
As introduced in Section 3, DTAEA consists of three major components. The following paragraphs
analyze their effects separately.

5.3.1 Effects of the Reconstruction Mechanism

As discussed in Section 2.2, the population convergence might not be affected when increasing the
number of objectives. However, the diversity enhancement strategy, e.g., the random injection of
DNSGA-II, has an adverse effect to the population convergence. In the meanwhile, it cannot pro-
vide enough diversified information to remedy the loss of population diversity. As for the prediction
strategy, e.g., the Kalman filter of MOEA/D-KF, it is usually developed to predict the change of
the PS’s position or shape, instead of the expansion or contraction of the PS or PF manifold. As a
consequence, its large prediction errors are harmful to both the convergence and the diversity. Since
the stationary EMO algorithms do not make any reaction to the changing environment, the popula-
tion convergence is not affected; while the self-adaptive property of EA can also help the population
gradually adapt to the changed environment. These explain the competitive performance of the sta-
tionary EMO algorithms comparing to their dynamic counterparts for handling the DMOPs with a
dynamically changing number of objectives. In contrast, the CA of our proposed DTAEA, consisted
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Figure 6: IGD trajectories across the whole evolution process.
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Figure 7: The rank of IGD obtained by different algorithms at each time step.
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Table 4: Performance Comparisons of DTAEA and the Other Algorithms on MHV Metric

τt

NSGA-II DNSGA-II MOEA/D MOEA/D-KF DTAEA

MHV R MHV R MHV R MHV R MHV R

F1

25 74.8%(9.58E-2)† 3.6 72.3%(8.08E-2)† 3.7 97.3%(1.09E-2)† 2.7 74.6%(4.33E-2)† 3.9 99.7%(6.03E-3) 1.1

50 60.1%(1.16E-1)† 4.1 61.2%(1.02E-1)† 4.1 99.7%(3.40E-2)† 2.6 78.0%(1.22E-1)† 3.2 100.0%(8.39E-5) 1

100 74.9%(2.10E-1)† 4 69.3%(2.43E-1)† 4.1 99.9%(1.65E-2)† 2.7 99.0%(2.07E-2)† 3.2 100.0%(1.84E-5) 1

200 76.0%(3.43E-1)† 4.1 83.3%(3.58E-1)† 3.9 100.0%(4.65E-2)† 2.8 100.0%(2.15E-2)† 3.2 100.0%(2.69E-5) 1

F2

25 92.4%(3.47E-3)† 4.1 92.4%(6.01E-3)† 4 93.5%(2.91E-3)† 2.6 93.4%(1.36E-3)† 3.1 94.4%(6.26E-5) 1

50 91.9%(4.14E-3)† 4.2 91.7%(5.28E-3)† 4.1 93.8%(1.06E-3)† 2.6 93.7%(1.36E-3)† 3.1 94.4%(3.09E-5) 1

100 91.0%(5.33E-3)† 4.3 90.6%(8.46E-3)† 4.4 93.9%(4.55E-4)† 2.5 93.9%(6.22E-4)† 2.8 94.5%(8.88E-6) 1

200 90.8%(6.80E-3)† 4.3 90.4%(7.10E-3)† 4.4 94.0%(5.10E-4)† 2.6 94.0%(5.09E-4)† 2.7 94.5%(4.03E-6) 1

F3

25 67.1%(7.75E-2)† 3.4 69.3%(7.98E-2)† 3.3 80.6%(6.04E-1)† 3.4 59.9%(5.09E-2)† 3.8 90.6%(9.47E-2) 1.1

50 49.9%(2.21E-2)† 4 49.3%(3.46E-2)† 4.1 89.8%(2.96E-2)† 2.5 67.2%(5.19E-2)† 3.3 94.0%(3.66E-3) 1.1

100 45.9%(6.49E-2)† 4.3 44.8%(7.63E-2)† 4.3 93.2%(8.02E-3)† 2.4 91.3%(6.33E-2)† 3 94.4%(3.32E-4) 1

200 44.0%(7.13E-2)† 4.2 44.6%(7.75E-2)† 4.2 93.6%(7.25E-2)† 2.7 93.3%(5.40E-2)† 3 94.4%(1.26E-4) 1

F4

25 91.2%(4.96E-3)† 3.3 88.8%(2.09E-2)† 3.9 90.8%(1.67E-2)† 3.4 91.7%(8.38E-3)† 3.3 94.4%(1.60E-4) 1

50 88.8%(2.04E-2)† 3.6 87.6%(2.81E-2)† 3.7 91.9%(9.97E-3)† 3.4 92.1%(1.41E-2)† 3.3 94.4%(1.16E-5) 1

100 86.6%(2.83E-2)† 3.6 86.7%(3.45E-2)† 3.5 92.4%(1.31E-2)† 3.4 92.6%(8.25E-3)† 3.5 94.5%(3.26E-6) 1

200 88.8%(1.32E-2)† 4 88.5%(2.65E-2)† 3.9 92.9%(1.13E-2)† 3 92.9%(1.26E-2)† 3.2 94.5%(4.19E-6) 1

F5

25 58.6%(1.38E-1)† 4.5 87.0%(2.36E-2)† 4.1 93.3%(6.10E-3)† 2.2 93.3%(2.82E-3)‡ 2.3 89.4%(6.64E-3) 2

50 86.3%(1.60E-2)† 4.3 85.9%(1.60E-2)† 4.3 94.0%(2.02E-3)† 2.1 94.1%(3.35E-3)‡ 1.9 93.7%(1.25E-3) 2.4

100 93.4%(5.24E-3)† 3.8 93.5%(4.20E-3)† 4.3 94.3%(1.15E-3)† 2.9 94.4%(1.95E-3)† 2.3 94.6%(3.62E-4) 1.7

200 94.0%(3.40E-3)† 3.7 93.3%(4.36E-3)† 4.5 94.5%(6.96E-4)† 2.9 94.5%(2.20E-3)† 2.3 94.8%(1.84E-4) 1.6

F6

25 60.1%(6.41E-2)† 4.7 75.8%(6.36E-2)† 3.8 93.2%(1.72E-2)† 2.2 93.5%(2.77E-3)‡ 2.1 89.1%(9.72E-3) 2.3

50 78.9%(3.83E-2)† 4.6 73.6%(2.76E-2)† 4.3 94.0%(1.71E-3)† 1.9 93.9%(1.73E-3)‡ 1.8 93.7%(1.45E-3) 2.4

100 88.0%(1.36E-2)† 4.8 91.8%(4.13E-3)† 4 94.3%(1.54E-3)† 2.3 94.2%(2.15E-3)† 2.4 94.5%(3.50E-4) 1.5

200 87.9%(1.91E-2)† 4.7 92.1%(5.84E-3)† 4.1 94.5%(5.71E-4)† 2.5 94.5%(1.35E-3)† 2.3 94.7%(3.39E-4) 1.4

R denotes the global rank assigned to each algorithm by averaging the ranks obtained at all time steps. Wilcoxon’s rank sum test at a 0.05

significance level is performed between DTAEA and each of NSGA-II, DNSGA-II, MOEA/D and MOEA/D-KF. † and ‡ denote the performance
of the corresponding algorithm is significantly worse than and better than that of DTAEA, respectively. The best median value is highlighted in
boldface with gray background.

of the elite solutions, preserves the population convergence; in the meanwhile, the DA of DTAEA,
consisted of a set of uniformly sampled solutions from the decision space, provide as much diversi-
fied information as possible to help the population adapt to the changed environment. In Fig. 3 of
the supplementary file3, we keep track of the population distribution for several iterations after the
number of objectives increases from two to three. From this figure, we can clearly see that neither
NSGA-II nor DNSGA-II is able to spread the population across the expanded PF. As for MOEA/D
and MOEA/D-KF, although the population seems to have an acceptable spread along the expanded
PF, the solutions are a bit away from the PF. In contrast, our proposed DTAEA successfully spread
the solutions across the PF without sacrificing any convergence property.

As discussed in Section 2.2, the spread of the population might not be affected too much when
decreasing the number of objectives, while some solutions are propelled away from the PF. In this case,
the randomly injected solutions of DNGSA-II cannot provide sufficient selection pressure towards the
PF. As for MOEA/D-KF, due to the large prediction errors, the effect of those predicted solutions
of the Kalman filter is almost the same as the random solutions. In contrast, DTAEA uses the
non-dominated solutions of the elite population to construct the CA; in the meanwhile, it uses the
remaining ones, which have a well spread in the objective space, to construct the DA. By these
means, the population is able to have a well balance between convergence and diversity in the changed
environment. In Fig. 4 of the supplementary file, we keep track of the population distribution for
several iterations after the number of objectives decreases from four to three. From this figure, we can
clearly see that the population spread after decreasing the number of objectives is acceptable in the first
place, but having some duplicate solutions. After several iterations, DTAEA achieves a significantly
better performance on both convergence and diversity than the other comparative algorithms.

5.3.2 Effects of the Restricted Mating Selection Mechanism

As discussed in Section 3.3, the CA and the DA have different characteristics. In particular, the prior
one concerns more about convergence whereas the latter one concerns more about the diversity. Their
complementary effect, which finally contributes to the balance between convergence and diversity, is

3The supplementary document can be found from https://coda-group.github.io/publications/suppDTAEA.pdf
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implemented by the restricted mating selection mechanism between them. In particular, one of the
mating parents is constantly selected from the CA while the selection of the other one depends on
the diversity information of the CA. In order to validate the effect of this restricted mating selection
mechanism, we choose F2 as the instance where τt = 50 and plot the trajectories of proportion of
second mating parent selected from the CA and DA respectively in Fig. 8. From this figure, we
notice that the proportion for selecting the second mating parent from the DA is relatively high at
the beginning when the number of objectives is changed. But with the progress of evolution, both
mating parents are selected from the CA when its diversity becomes better.

1 2 3 4 5 6 7 8 9 10
Time Step

0.0

0.2

0.4

0.6

0.8

1.0
DA CA

Figure 8: Proportion of the second mating parent selected from the CA and DA respectively.

5.3.3 Effects of the Update Mechanisms

As discussed in Section 3.2, the update mechanisms are used to maintain the complementary effects
between the CA and the DA. The CA keeps a continuously strong selection pressure for the population
convergence; while the DA maintains a set of well diversified solutions. In order to validate the
importance of the three different components of DTAEA, we developed three DTAEA variants as
follows:

• DTAEA-v1: this variant modifies DTAEA by removing the restricted mating selection mecha-
nism proposed in Section 3.3. In particular, now the mating parents are respectively selected
from the CA and the DA without considering the population distribution.

• DTAEA-v2: this variant modifies DTAEA by removing the reconstruction mechanism proposed
in Section 3.1. In other words, it does not make any response to the changing environment.

• DTAEA-v3: this variant merely uses the update mechanisms to maintain the CA and the DA
whereas it does not make any response to the changing environment. In addition, it does not
use the restricted mating selection mechanism as DTAEA-v1.

We conduct the experiments on F1 to F6 according to the same experimental settings introduced
in Section 4. Table 5 and Table 6 give the median and IQR values according to the MIGD and MHV
metrics. From these results we can see that the original DTAEA, consisted of all three components, has
shown clearly better performance than the other three variants. More specifically, as shown in Table 5
and Table 6, the performance of DTAEA-v3 is the worst among all three variants. This observation is
reasonable as DTAEA-v3 neither responds to the changing environment nor takes advantages of the
complementary effect of the CA and the DA for offspring generation. The performance of DTAEA-v2 is
slightly better than DTAEA-v3. Therefore, we can see that even without any response to the changing
environment, the restricted mating selection mechanism can also provide some guidance to the search
process. As for DTAEA-v1, we can see that the performance can be significantly improved by using
the reconstruction mechanism proposed in Section 3.1 to respond to the changing environment. This
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superiority is more obvious when the frequency of change is high. By comparing the results between
DTAEA-v1 and the original DTAEA, we can clearly see the importance of taking advantages of the
complementary effect of the CA and the DA for offspring generation. All in all, we can conclude that
all three components of DTAEA are of significant importance for handling the DMOP with a changing
number of objectives.

Table 5: Performance Comparisons of DTAEA and its Three Variants on MIGD Metric

τt

DTAEA-v1 DTAEA-v2 DTAEA-v3 DTAEA

MIGD R MIGD R MIGD R MIGD R

F1

25 5.05E-4(1.85E-4) 1.9 7.14E-4(1.72E-4)† 2.8 7.29E-4(2.40E-4)† 2.9 5.50E-4(1.99E-4) 2.3

50 3.95E-4(2.49E-5) 2.5 4.02E-4(1.54E-5)† 2.6 4.04E-4(1.19E-5)† 2.8 3.88E-4(1.03E-5) 2.1

100 3.72E-4(3.97E-6)† 3.5 3.64E-4(3.09E-6) 2 3.65E-4(2.43E-6) 2.7 3.64E-4(2.49E-6) 1.8

200 3.59E-4(1.07E-6)† 3.4 3.56E-4(1.20E-6) 1.8 3.59E-4(2.46E-6)† 3.4 3.55E-4(1.41E-6) 1.5

F2

25 1.28E-3(5.20E-6)† 2.6 1.39E-3(1.97E-5)† 2.8 1.40E-3(4.08E-5)† 3.1 1.26E-3(4.58E-6) 1.5

50 1.26E-3(1.59E-6)† 3.4 1.25E-3(1.76E-5) 2 1.25E-3(2.77E-5)† 2.8 1.25E-3(3.26E-6) 1.9

100 1.23E-3(1.88E-6)† 3.4 1.22E-3(2.24E-6)† 1.9 1.23E-3(2.32E-6)† 3 1.22E-3(1.30E-6) 1.7

200 1.21E-3(1.86E-6)† 3.3 1.20E-3(1.31E-6)† 1.8 1.21E-3(1.73E-6)† 3.2 1.20E-3(2.20E-6) 1.7

F3

25 1.92E-3(9.48E-4) 1.9 2.63E-3(1.29E-3)† 3 2.32E-3(8.94E-4) 2.9 2.06E-3(1.34E-3) 2.2

50 1.32E-3(4.29E-5)‡ 2.1 1.42E-3(5.20E-5) 2.8 1.44E-3(5.95E-5) 2.9 1.39E-3(1.06E-4) 2.3

100 1.26E-3(5.32E-6)† 3.1 1.25E-3(1.38E-5) 2.1 1.25E-3(1.87E-5)† 2.7 1.24E-3(9.04E-6) 2

200 1.23E-3(3.09E-6)† 3 1.22E-3(2.43E-6)† 2.1 1.23E-3(5.26E-6)† 3.2 1.22E-3(4.17E-6) 1.8

F4

25 1.29E-3(3.40E-5)‡ 1.7 6.82E-3(2.18E-7)† 3.3 6.82E-3(1.87E-7)† 3.3 1.32E-3(7.80E-5) 1.7

50 1.25E-3(2.17E-6)† 2 6.81E-3(8.96E-8)† 3.3 6.81E-3(7.24E-8)† 3.3 1.24E-3(4.05E-6) 1.4

100 1.22E-3(1.58E-6)† 2 6.81E-3(1.93E-7)† 3.3 6.81E-3(1.05E-7)† 3.4 1.22E-3(1.50E-6) 1.4

200 1.21E-3(1.85E-6)† 2.1 6.81E-3(1.58E-4)† 3.3 6.81E-3(3.71E-4)† 3.4 1.20E-3(1.35E-6) 1.2

F5

25 2.52E-3(9.09E-5)‡ 1.8 7.69E-3(5.69E-4)† 3.3 7.66E-3(3.22E-4)† 3.2 2.61E-3(9.71E-5) 1.6

50 2.02E-3(6.94E-5)† 1.8 1.35E-2(3.26E-4)† 3.5 1.34E-2(2.17E-4)† 3.5 1.91E-3(6.69E-5) 1.2

100 1.49E-3(1.72E-5)† 1.7 1.80E-2(4.43E-4)† 3.5 1.79E-2(9.68E-4)† 3.5 1.45E-3(2.98E-5) 1.3

200 1.38E-3(1.17E-5)† 1.7 1.95E-2(5.39E-4)† 3.4 1.97E-2(3.73E-4)† 3.6 1.36E-3(6.77E-6) 1.3

F6

25 2.90E-3(1.68E-4) 1.6 1.11E-2(7.24E-4)† 3.5 1.12E-2(5.90E-4)† 3.5 2.98E-3(1.76E-4) 1.4

50 2.22E-3(7.36E-5)† 1.7 1.61E-2(6.16E-4)† 3.5 1.59E-2(7.97E-4)† 3.5 2.08E-3(5.08E-5) 1.3

100 1.57E-3(2.31E-5) 1.6 2.10E-2(9.39E-4)† 3.6 2.10E-2(9.48E-4)† 3.4 1.56E-3(2.25E-5) 1.4

200 1.46E-3(1.07E-5) 1.6 2.23E-2(7.09E-4)† 3.6 2.19E-2(6.50E-4)† 3.4 1.46E-3(2.09E-5) 1.4

R denotes the global rank assigned to each algorithm by averaging the ranks obtained at all time steps. Wilcoxon’s rank sum test at a 0.05

significance level is performed between DTAEA and each of DTAEA-v1, DTAEA-v2 and DTAEA-v3. † and ‡ denote the performance of the
corresponding algorithm is significantly worse than and better than that of DTAEA, respectively. The best median value is highlighted in boldface
with gray background.

5.3.4 Performance Comparisons on a Different Changing Sequence

In Section 5.1 and Section 5.2, the experiments only consider the scenarios where the number of objec-
tives increases or decreases by one at each time step. A natural question is: how is the performance of
our proposed algorithm under the circumstance where the number of objectives changes in a different
sequence? Without loss of generality, this further experiment considers the time varying number of
objectives m(t) as follows:

m(t) =


3, t = 1

m(t− 1) + 2, t ∈ [2, 3]

m(t− 1)− 2, t ∈ [4, 5]

m(t− 1)− 1, t = 6

(13)

where t ∈ {1, · · · , 6} is a discrete time. Here we also consider four different frequencies of change, i.e.,
τt is as 25, 50, 100 and 200, respectively. From the empirical results shown in Table 7 and Table 8,
we can clearly see that our proposed DTAEA is the best optimizer on almost all comparisons (92 out
of 96 for MIGD and 88 out 96 for MHV). Similar to the observations from the previous sections, the
performance of DTAEA might not be stable under a high frequency of change; while its performance
becomes constantly competitive with the increase of τt.

6 Conclusions

Different from the current studies on DMO, which mainly focus on problems with time-dependent
objective functions, this paper considers the DMOP with a time varying number of objectives. This
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Table 6: Performance Comparisons of DTAEA and its Three Variants on MHV Metric

τt

DTAEA-v1 DTAEA-v2 DTAEA-v3 DTAEA

MHV R MHV R MHV R MHV R

F1

25 99.85%(4.60E-3) 1.7 99.57%(3.05E-3) 3 99.45%(6.72E-3)† 3.3 99.7%(6.03E-3) 2

50 100.00%(1.40E-4)† 2.1 99.98%(1.86E-4)† 2.7 99.98%(2.71E-4)† 3.3 100.0%(8.39E-5) 1.8

100 100.00%(1.82E-5)† 2.5 100.00%(2.95E-5)† 2.4 100.00%(2.75E-5)† 3.4 100.0%(1.84E-5) 1.7

200 100.00%(1.66E-5)† 2.5 100.00%(2.19E-5)† 2.2 100.00%(2.65E-5)† 3.1 100.0%(2.69E-5) 2.1

F2

25 94.37%(7.52E-5)† 2.6 93.94%(1.08E-3)† 2.7 93.86%(1.94E-3)† 3.5 94.4%(6.26E-5) 1.2

50 94.42%(2.46E-5)† 2.9 94.42%(2.21E-4)† 2.4 94.38%(2.65E-4)† 3.5 94.4%(3.09E-5) 1.2

100 94.45%(8.64E-6)† 3.3 94.46%(7.38E-6)† 1.9 94.45%(1.34E-5)† 3.4 94.5%(8.88E-6) 1.5

200 94.46%(4.63E-6)† 3.4 94.46%(5.29E-6)† 1.8 94.46%(8.98E-6)† 3.2 94.5%(4.03E-6) 1.7

F3

25 91.08%(6.51E-2) 1.7 89.86%(7.13E-2) 3 89.84%(4.89E-2) 3.3 90.6%(9.47E-2) 1.9

50 94.24%(2.74E-3) 1.9 93.90%(1.66E-3)† 2.8 93.83%(2.62E-3)† 3.2 94.0%(3.66E-3) 2.1

100 94.39%(3.78E-4)† 2.5 94.40%(2.96E-4)† 2.4 94.38%(5.41E-4)† 3.3 94.4%(3.32E-4) 1.8

200 94.43%(1.60E-4)† 2.9 94.44%(1.52E-4)† 2.1 94.44%(2.72E-4)† 3.2 94.4%(1.26E-4) 1.8

F4

25 94.39%(1.29E-4) 1.9 79.48%(5.82E-5)† 3.3 79.47%(6.49E-5)† 3.3 94.4%(1.60E-4) 1.5

50 94.44%(1.76E-5)† 2.1 79.47%(1.25E-4)† 3.3 79.47%(1.24E-4)† 3.3 94.4%(1.16E-5) 1.3

100 94.46%(8.42E-6)† 2.1 79.46%(2.01E-4)† 3.3 79.47%(1.21E-4)† 3.3 94.5%(3.26E-6) 1.2

200 94.46%(8.77E-6)† 2 79.47%(1.22E-2)† 3.3 79.47%(3.27E-2)† 3.4 94.5%(4.19E-6) 1.2

F5

25 90.37%(5.17E-3)‡ 1.8 65.36%(2.23E-2)† 3.4 64.82%(8.67E-3)† 3.4 89.4%(6.64E-3) 1.5

50 93.53%(1.34E-3)† 1.8 46.58%(1.64E-2)† 3.5 46.18%(2.98E-2)† 3.5 93.7%(1.25E-3) 1.2

100 94.53%(4.58E-4)† 1.8 15.51%(3.19E-2)† 3.5 16.54%(3.35E-2)† 3.5 94.6%(3.62E-4) 1.2

200 94.73%(3.03E-4)† 1.8 11.56%(1.35E-2)† 3.4 11.09%(6.06E-3)† 3.6 94.8%(1.84E-4) 1.2

F6

25 89.31%(1.18E-2) 1.7 51.61%(4.21E-2)† 3.5 51.54%(2.37E-2)† 3.5 89.1%(9.72E-3) 1.3

50 92.93%(1.19E-3)† 1.8 33.26%(1.84E-2)† 3.5 33.80%(2.49E-2)† 3.5 93.7%(1.45E-3) 1.2

100 93.92%(5.32E-4)† 1.8 7.99%(8.41E-3)† 3.5 8.22%(7.57E-3)† 3.5 94.5%(3.50E-4) 1.2

200 94.14%(3.41E-4)† 1.8 7.92%(7.58E-3)† 3.5 8.07%(9.59E-3)† 3.5 94.7%(3.39E-4) 1.2

R denotes the global rank assigned to each algorithm by averaging the ranks obtained at all time steps. Wilcoxon’s rank sum test at a 0.05

significance level is performed between DTAEA and each of DTAEA-v1, DTAEA-v2 and DTAEA-v3. † and ‡ denote the performance of the
corresponding algorithm is significantly worse than and better than that of DTAEA, respectively. The best median value is highlighted in boldface
with gray background.

Table 7: Performance Comparisons on MIGD Metric with a Different Changing Sequence.

τt

NSGA-II DNSGA-II MOEA/D MOEA/D-KF DTAEA

MIGD R MIGD R MIGD R MIGD R MIGD R

F1

25 2.97E-3(3.40E-3)† 2.7 2.00E-3(3.56E-3)† 2.8 2.40E-3(8.80E-3)† 3.8 1.67E-2(1.81E-2)† 4.3 1.10E-3(6.03E-4) 1.4

50 1.31E-2(1.26E-2)† 3.8 1.33E-2(1.21E-2)† 3.8 7.78E-4(2.92E-4)† 3 1.80E-3(2.10E-3)† 3.5 3.38E-4(3.38E-5) 1

100 2.54E-2(3.50E-2)† 4 3.23E-2(3.94E-2)† 4.1 5.73E-4(4.71E-5)† 2.8 7.27E-4(4.18E-4)† 3.2 2.92E-4(1.75E-6) 1

200 3.11E-3(4.08E-2)† 4.3 1.25E-2(3.68E-2)† 4.3 5.02E-4(2.16E-4)† 2.4 6.39E-4(1.89E-3)† 3 2.90E-4(2.10E-6) 1

F2

25 1.41E-3(5.72E-5)† 3.2 1.48E-3(1.11E-4)† 3.4 1.81E-3(8.28E-5)† 3.5 1.82E-3(4.91E-5)† 3.9 1.07E-3(5.22E-6) 1

50 1.54E-3(1.01E-4)† 3.8 1.63E-3(1.28E-4)† 4 1.70E-3(6.46E-5)† 2.9 1.71E-3(6.81E-5)† 3.3 1.06E-3(3.42E-6) 1

100 1.82E-3(1.32E-4)† 4.1 1.90E-3(9.04E-5)† 4.2 1.62E-3(2.88E-5)† 2.7 1.64E-3(2.74E-5)† 3.1 1.04E-3(1.83E-6) 1

200 1.98E-3(1.03E-4)† 4.1 1.96E-3(1.38E-4)† 4.2 1.58E-3(3.77E-5)† 2.8 1.56E-3(2.12E-5)† 2.8 1.03E-3(1.34E-6) 1.1

F3

25 8.26E-3(9.99E-3)† 2.8 8.09E-3(5.22E-3)† 2.8 4.88E-3(4.31E-3)† 3.8 2.11E-2(4.73E-2)† 4.2 2.66E-3(3.29E-3) 1.4

50 1.33E-2(1.64E-2)† 3.4 1.09E-2(1.84E-2)† 3.4 2.79E-3(6.58E-4)† 3.2 5.05E-3(6.62E-3)† 3.8 1.20E-3(1.04E-4) 1.1

100 9.02E-2(5.18E-2)† 3.9 9.16E-2(4.43E-2)† 4 2.42E-3(2.19E-3)† 2.8 2.41E-3(1.63E-3)† 3.2 1.06E-3(8.73E-6) 1

200 1.51E-1(1.28E-1)† 4.4 1.76E-1(9.13E-2)† 4.4 1.69E-3(5.03E-5)† 2.4 2.01E-3(2.33E-4)† 2.9 1.05E-3(7.16E-6) 1

F4

25 2.64E-3(4.22E-4)† 2.5 2.79E-3(3.27E-4)† 3 4.08E-3(7.27E-4)† 4.2 3.91E-3(3.17E-4)† 4.3 1.10E-3(2.29E-5) 1

50 1.77E-3(3.40E-4)† 2.8 2.26E-3(3.41E-4)† 3.5 3.44E-3(5.08E-4)† 4 3.03E-3(3.74E-4)† 3.8 1.06E-3(1.24E-3) 1

100 2.19E-3(2.30E-4)† 3.2 2.29E-3(3.31E-4)† 3.4 3.04E-3(3.42E-4)† 3.8 3.14E-3(3.88E-4)† 3.7 1.04E-3(2.78E-6) 1

200 2.26E-3(1.92E-4)† 3.3 2.24E-3(1.88E-4)† 3.1 2.71E-3(1.56E-4)† 3.8 2.68E-3(8.39E-4)† 3.8 1.03E-3(2.42E-6) 1

F5

25 7.14E-3(3.50E-3)† 3.9 3.87E-3(5.66E-4)† 3.5 2.53E-3(2.74E-4)‡ 2.5 2.30E-3(2.67E-4)‡ 2.5 2.94E-3(3.79E-4) 2.7

50 2.83E-3(2.91E-4)† 3.6 3.27E-3(3.15E-4)† 4.4 1.99E-3(9.74E-5)† 2.6 1.94E-3(1.17E-4)† 2.4 1.84E-3(8.27E-5) 2

100 1.72E-3(2.23E-4)† 3 1.84E-3(1.50E-4)† 3.8 1.80E-3(7.46E-5)† 3.3 1.74E-3(1.32E-4)† 3.3 1.29E-3(1.26E-5) 1.6

200 1.57E-3(1.12E-4)† 2.8 1.83E-3(1.01E-4)† 4.1 1.68E-3(3.56E-5)† 3.2 1.64E-3(7.30E-5)† 3 1.19E-3(1.29E-5) 1.9

F6

25 8.61E-3(1.74E-3)† 4.4 5.03E-3(5.70E-4)† 3.5 2.58E-3(3.54E-4)‡ 2.3 2.57E-3(3.77E-4)‡ 2.6 3.04E-3(1.71E-4) 2.2

50 2.92E-3(2.43E-4)† 4 3.72E-3(6.24E-4)† 3.8 2.24E-3(2.14E-4)† 2.5 2.38E-3(1.57E-4)† 2.7 2.05E-3(1.03E-4) 1.9

100 2.69E-3(3.24E-4)† 3.9 2.62E-3(1.58E-4)† 4.3 1.89E-3(9.26E-5)† 2.5 1.98E-3(1.20E-4)† 3 1.35E-3(1.34E-5) 1.4

200 2.89E-3(3.07E-4)† 4.3 2.53E-3(1.01E-4)† 4 1.87E-3(7.80E-5)† 2.4 1.85E-3(7.47E-5)† 2.9 1.27E-3(2.42E-5) 1.4

R denotes the global rank assigned to each algorithm by averaging the ranks obtained at all time steps. Wilcoxon’s rank sum test at a 0.05

significance level is performed between DTAEA and each of NSGA-II, DNSGA-II, MOEA/D and MOEA/D-KF. † and ‡ denote the performance
of the corresponding algorithm is significantly worse than and better than that of DTAEA, respectively. The best median value is highlighted in
boldface with gray background.
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Table 8: Performance Comparisons on MHV Metric with a Different Changing Sequence.

τt

NSGA-II DNSGA-II MOEA/D MOEA/D-KF DTAEA

MHV R MHV R MHV R MHV R MHV R

F1

25 87.4%(1.13E-1)† 3.1 92.5%(1.33E-1)† 3.1 91.6%(3.74E-1)† 3.5 70.2%(1.77E-1)† 3.9 98.2%(2.31E-2) 1.3

50 66.4%(1.49E-1)† 4.2 63.6%(2.28E-1)† 4.2 99.4%(7.77E-3)† 2.5 92.7%(1.24E-1)† 3 100.0%(1.26E-4) 1

100 71.8%(1.12E-1)† 4.1 71.4%(8.87E-2)† 4 99.9%(1.26E-3)† 2.7 99.5%(1.13E-2)† 3.2 100.0%(5.61E-5) 1

200 84.8%(1.97E-1)† 4 82.1%(2.41E-1)† 4 100.0%(1.08E-2)† 2.6 99.7%(9.86E-2)† 3.3 100.0%(1.73E-5) 1

F2

25 91.1%(3.29E-3)† 3.8 91.5%(2.75E-3)† 3.8 92.1%(1.93E-3)† 2.9 92.0%(1.49E-3)† 3.5 92.9%(1.06E-4) 1

50 91.6%(3.16E-3)† 4.1 91.6%(3.23E-3)† 4 92.3%(1.01E-3)† 2.8 92.3%(1.28E-3)† 3.1 92.9%(5.67E-5) 1

100 90.6%(8.76E-3)† 4.3 90.3%(8.01E-3)† 4.5 92.5%(6.31E-4)† 2.4 92.4%(6.47E-4)† 2.7 92.9%(1.65E-5) 1

200 89.7%(7.17E-3)† 4.4 89.8%(9.25E-3)† 4.5 92.5%(5.50E-4)† 2.5 92.6%(4.09E-4)† 2.3 93.0%(5.51E-6) 1.1

F3

25 76.0%(5.96E-2) 3.1 75.8%(1.80E-2) 3.3 78.4%(3.14E-1)† 3.3 62.2%(6.96E-2)† 3.7 85.5%(1.92E-1) 1.6

50 63.2%(1.23E-1)† 3.8 62.9%(2.14E-1)† 3.7 86.8%(3.79E-2)† 2.8 74.3%(2.87E-1)† 3.6 92.5%(3.81E-3) 1.1

100 52.5%(9.26E-2)† 4.2 54.2%(5.61E-2)† 4.1 87.6%(1.24E-1)† 2.7 88.0%(1.04E-1)† 3 92.9%(4.27E-4) 1

200 60.7%(6.73E-2)† 4.4 60.3%(7.66E-2)† 4.3 92.2%(3.02E-3)† 2.3 90.7%(2.05E-2)† 2.9 92.9%(3.01E-4) 1

F4

25 90.3%(5.61E-3)† 3 89.5%(5.88E-3)† 3.6 87.5%(4.24E-2)† 3.8 88.7%(1.84E-2)† 3.7 92.9%(1.65E-4) 1

50 91.3%(1.32E-2)† 3.3 89.2%(1.91E-2)† 3.8 89.9%(2.30E-2)† 3.5 90.6%(5.72E-3)† 3.5 92.9%(4.48E-2) 1

100 88.9%(1.26E-2)† 3.5 88.2%(2.45E-2)† 3.6 90.5%(3.51E-3)† 3.4 90.4%(9.23E-3)† 3.5 93.0%(9.81E-6) 1

200 87.2%(1.65E-2)† 4.3 87.7%(1.92E-2)† 4 90.7%(5.10E-4)† 2.9 90.7%(1.84E-2)† 2.8 93.0%(4.10E-6) 1

F5

25 55.6%(5.86E-2)† 3.9 77.3%(3.98E-2)† 3.7 90.3%(1.23E-2)‡ 2.2 91.0%(4.75E-3)‡ 2.4 84.7%(2.59E-2) 2.8

50 83.9%(1.80E-2)† 4.1 83.3%(2.76E-2)† 4.3 91.8%(3.26E-3) 2.2 91.9%(4.21E-3) 1.8 91.2%(2.63E-3) 2.6

100 91.4%(8.99E-3)† 3.3 91.7%(3.53E-3)† 4 92.2%(2.68E-3)† 2.9 92.1%(5.46E-3)† 2.7 92.3%(4.12E-4) 2.1

200 92.1%(5.78E-3)† 3.3 91.6%(3.04E-3)† 4.2 92.4%(5.56E-4)† 3 92.3%(3.23E-3)† 2.5 92.7%(2.17E-4) 2.1

F6

25 54.3%(5.32E-2)† 4.6 68.8%(3.85E-2)† 3.5 90.8%(1.37E-2)‡ 2 91.1%(7.15E-3)‡ 2.3 85.2%(1.40E-2) 2.6

50 86.6%(1.04E-2)† 4.5 80.1%(4.06E-2)† 3.9 91.8%(6.93E-3)‡ 2 91.7%(4.34E-3)‡ 2 90.7%(3.66E-3) 2.7

100 88.4%(1.29E-2)† 4.7 90.5%(3.61E-3)† 4 92.2%(1.36E-3)† 2.3 92.1%(4.34E-3)† 2.5 92.3%(4.21E-4) 1.6

200 88.3%(1.27E-2)† 4.7 90.9%(3.60E-3)† 3.9 92.4%(8.28E-4)† 2.3 92.3%(2.97E-3)† 2.4 92.6%(4.68E-4) 1.6

R denotes the global rank assigned to each algorithm by averaging the ranks obtained at all time steps. Wilcoxon’s rank sum test at a 0.05

significance level is performed between DTAEA and each of NSGA-II, DNSGA-II, MOEA/D and MOEA/D-KF. † and ‡ denote the performance
of the corresponding algorithm is significantly worse than and better than that of DTAEA, respectively. The best median value is highlighted in
boldface with gray background.

type of dynamics brings the expansion or contraction of the PF or PS manifold when increasing
or decreasing the number of objectives. In this case, the existing dynamic handling techniques are
not able to handle this scenario. To address this challenge, this paper has proposed a dynamic two-
archive EA (denoted as DTAEA) for handling the DMOP with a changing number of objectives. More
specifically, DTAEA simultaneously maintains two co-evolving populations, i.e., the CA and the DA,
during the evolution process. In particular, they have complementary effects: the CA concerns more
about the convergence while the DA concerns more about the diversity. The CA and the DA are
separately reconstructed whenever the environment changes. In the meanwhile, they are maintained
in different manners. By using a restricted mating selection mechanism, DTAEA takes advantages
of the complementary effects of the CA and the DA to strike the balance between convergence and
diversity all the time. Comprehensive experiments on a set of dynamic multi-objective benchmark
problems fully demonstrate the superiority of DTAEA for handling the DMOP with a dynamically
changing number of objectives. In particular, it is able to effectively and efficiently track the expansion
or contraction of the PF or PS manifold whenever the environment changes. In the experiments, we
also noticed that some state-of-the-art dynamic EMO algorithms even showed inferior performance
than their stationary counterparts.

This paper is the first attempt towards a systematic investigation of the methods for handling the
DMOP with a changing number of objectives. Much more attention and effort should be required on
this topic. In future, it is interesting to investigate the dynamic environments where the changes are
hard to detect and do not vary regularly. Constrained optimization problems, which are ubiquitous in
the real-life application scenarios, have not been considered in this work. It is worth considering dy-
namic constraints in the dynamic environment as well and thus requires effective constraint handling
techniques accordingly [54]. Furthermore, this work focuses on designing an effective environmental
selection operator to adapt to the changing environment. It is also interesting to investigate the repro-
duction operation which can adapt the search behavior autonomously [70–75] according to the current
landscape. In addition, our recently developed efficient non-domination level update method [76] can
be considered to accelerate the process of identifying the current non-domination level structure. The
benchmark problems used in this paper are developed from the classic DTLZ benchmark suite. It
is interesting to develop more challenging benchmark problems with additional characteristics, e.g.,
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from the WFG [77] and the CEC 2009 competition [78] benchmark suites. Last but not the least,
new performance metrics are also needed to better facilitate the analysis and comparisons of dynamic
EMO algorithms.

7 Appendix: Proof of Theorem 1

Proof. Let us consider the scenario of increasing the number of objectives at first, where we prove
the theorem by contradiction. At time step t1, we assume that x1 and x2 are in PSt1 . Accordingly,
F(x1, t1) and F(x2, t1) are in PFt1 . At time step t2, we increase the number of objectives by one, i.e.,
m(t2) = m(t1) + 1. Assume that x1 is still in PSt2 whereas x2 is not, thus we have x1 �t2 x2. In
other words, ∀i ∈ {1, · · · ,m(t1),m(t2)} (i.e., ∀i ∈ {1, · · · ,m(t1),m(t1) + 1}), fi(x1, t2) ≤ fi(x

2, t2);
and ∃j ∈ {1, · · · ,m(t1),m(t1) + 1}, fj(x1, t2) < fj(x

2, t2). This contradicts the assumption that x1

and x2 are non-dominated from each other at time step t1. Then, we conclude that PFt1 is a subset
of PFt2 when increasing the number of objectives.

Now let us consider the scenario of decreasing the number of objectives. At time step t1, we assume
that x1 and x2 are in PSt1 . Accordingly, F(x1, t1) and F(x2, t1) are in PFt1 . Furthermore, we assume
that ∀i ∈ {1, · · · ,m(t1)−1}, we have fi(x

1, t1) ≤ fi(x2, t1) and fm(t1)(x
1, t1) > fm(t1)(x

2, t1). At time
step t2, we decrease the number of objectives by one, i.e., m(t2) = m(t1)− 1. If fm(t1) is removed at
time step t2, we can derive that x1 �t2 x2. That is to say x2 is not in PFt2 . On the other hand, if
fi, where i ∈ {1, · · · ,m(t1) − 1}, is removed at time step t2, we can derive that x1 and x2 are still
non-dominated from each other. In other words, x1 and x2 are still in PFt2 . All in all, we conclude
that PFt1 is a superset of PFt2 . �
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